
November 2024

Green Hydrogen Manufacturing: Value Chain Development

Final Report

Myrielle Robitaille, Eng.

Managing Director, Energy & Environment myrielle.robitaille @sia-partners.com (514) 465-4581

- 1. INTRODUCTION AND GLOBAL METHODOLOGY
- 2. THE HYDROGEN MANUFACTURING ECOSYSTEM
- 3. INTELLECTUAL PROPERTY ANALYSIS
- 4. SELECTION OF STRATEGIC SEGMENTS
- 5. SOCIO-ECONOMICAL ANALYSIS
- 6. CONCLUSION AND RECOMMENDATIONS

APPENDIX

APPENDIX 1. DETAILED METHODOLOGY

Executive Summary

This study evaluates the importance of strengthening support for Quebec's hydrogen manufacturing sector. Conducted by Sia Partners under the supervision of PRIMA Québec and mandated by the MEIE, it builds on two previous NRC reports. Collaborative efforts by IRH and UQTR's I2E3 showcase the latest advancements in hydrogen technologies.

A comprehensive analysis of the manufacturing ecosystem in Quebec and internationally was conducted. Over 350 stakeholders were involved, including nearly 200 established manufacturers and approximately 30 industrial and institutional players, whose insights contributed to the conclusions of this study.

The analysis initially focuses on **14 manufacturing segments** encompassing the entire hydrogen (H2) value chain. An in-depth examination of these segments identified four priority equipment categories for Quebec: **electrolyzers**, **fuel cells**, **stationary tanks**, **and reactors for H2 production** (including plasma pyrolysis and biomass gasification).

A study on the socio-economic impact of developing these manufacturing sectors in Quebec was conducted. The four segments were first compared with each other and then with the battery sector, highlighting several synergies in terms of critical and strategic minerals, technologies, workforce, and policies.

Finally, this study highlights **eight (8) key findings regarding the hydrogen (H2) manufacturing chain, along with nine (9) recommendations** for government institutions. These findings emphasize the urgent need to develop a comprehensive manufacturing industrial policy, while also addressing the importance of clarifying priority technological directions, fostering cross-industry synergies, and understanding the international regulatory context.

Glossary | Abbreviations 1/2

AFC	Alkaline Fuel Cell
ALK	Alkaline Electrolyser
PSA	Pressure Swing Adsorption
Aux.	Auxiliary
ВоР	Balance of Plant
CRD	Construction, Renovation, Demolition
DOE	Department of Energy (United States)
Electro.	Electrolyser
RE	Renewable Energy
EU	Europe
USA	United States
RNG	Renewable Natural Gas
GW	Gigawatt
H2	Hydrogen
Al	Artificial Intelligence

Indu.	Industrial
Integ.	Integration
IRA	Inflation Reduction Act
kg	Kilogram
kW	Kilowatt
LOHC	Liquid Organic Hydrogen Carrier
MCFC	Molten Carbonate Fuel Cells
SCM	Strategic and Critical Mineral
NA	No-applicable
TRL	Technology Readiness Level
NZE	Net Zero Emission
FC	Fuel Cell
PAFC	Phosphoric Acid Fuel Cell
PEM	Proton Exchange Membrane Electrolyser
PEMFC	Proton Exchange Membrane Fuel Cell

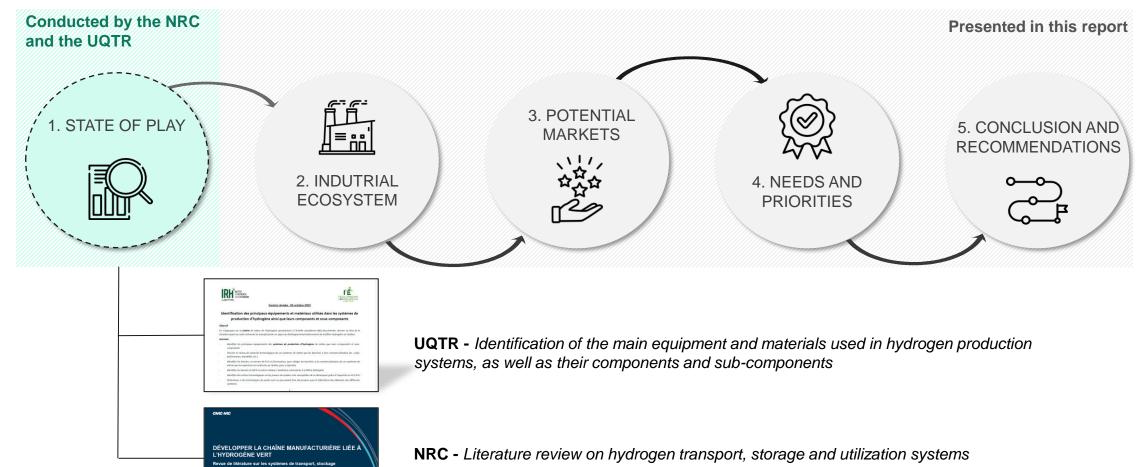
Glossary | Abbreviations 2/2

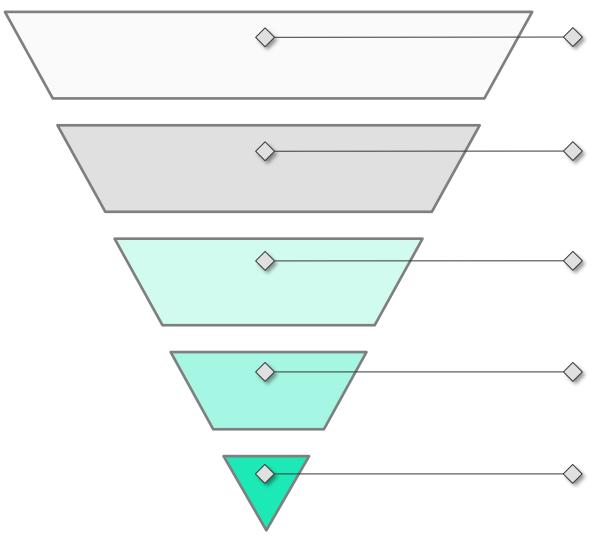
QC	Quebec	
R&D	Research and Development	
SOEC	Solid Oxyde Electrolyzer	
SOFC	Solid Oxyde Fuel Cell	
T°	Temperature	
CAGR	Compound Annual Growth Rate	
Techno.	Technology	
m.t	Metric Tons	
FTE	Full-Time Equivalent	

Glossary | Terminology and Acronyms 1/2

Actors present in Quebec	uebec Actor with an existing plant, project or site in Québec	
TRL	Technology readiness levels 1 - Observation of the basic principle 5 - Validation of technology in real-life environment 9 - Real system demonstrated in operational environment	
Small company/manufacturer	Between 1 and 99 employees	
Medium company/manufacturer Between 100 and 499 employees		
Large company/manufacturer	More than 500 employees	
Multinational company	Operates facilities in at least one foreign country	
Canadian leader	Top-performing Canadian manufacturer in its segment	
H2-Hub	Region with a high concentration of hydrogen-related activities	
CQFA	Carrefour québécois de la fabrication additive - Quebec additive manufacturing hub	
INRS Institut national de la recherche scientifique - National Institute of Scientific		
NRCC National Research Council Canada		
UQTR	Université de Québec à Trois-Rivières - University of Quebec at Trois-Rivières.	

Glossary | Terminology and Acronyms 2/2


ULaval	Université de Laval – Laval University	
CSA	Canadian Standards Association	
MEIE	Ministère de l'Économie, de l'innovation et de l'Énergie – Ministry Economy & Energy	
CMQ	CMQ Centre de métallurgie du Québec - Quebec Metallurgy Center	
CEPROCQ	CEPROCQ Centre d'études des procédés chimiques du Québec – Chemical Process Research Ce	
ETS École de technologie supérieure – University of superior technology		
CDCQ Centre de développement des composites du Québec - Quebec Composites Center		
SME	Small and medium-sized entreprise	
STIQ Sous-traitance industrielle Québec - Industrial Subcontracting Sector of Quebec		
RICQ Regroupement des industries des composites du Québec - Group of Compos Industries of Quebec		


Context | Key Project Challenges

The primary objective of the project is to assess the importance of expanding support for **Quebec's hydrogen manufacturing chain** by leveraging assets like its critical and strategic minerals, while pinpointing unique niches that can distinguish Quebec on the global stage.

Methodology | Funnel Approach Overview

1. IN-DEPTH STUDY OF THE MANUFACTURING ECOSYSTEM

- Analysis of 350 H₂ actors (Appendix 1.A).
- Selection of 200 actors for in-depth analysis
- Study of their strategies, ambitions, projects, partnerships, etc.
- Meeting with 30 industry players (Appendix 1.B).

2. IN-DEPTH ANALYSIS OF H2 EQUIPMENT

- Segmentation of the value chain into 14 segments of equipment for detailed analysis
- In-depth analysis of associated markets, major projects, critical minerals, R&D dynamics, etc.

3. SELECTION OF 4 STRATEGIC EQUIPMENT SEGMENTS

- Identification of key criteria for prioritizing segments: alignment with H₂ strategy, Quebec capabilities, etc.
- Calculation of a score for each segment, then selection of the 4 most promising segments

4. ANALYSIS OF SOCIO-ECONOMIC IMPACTS

- Selection of 9 indicators reflecting the socio-economic impact of manufacturing sector development
- Study of these indicators for the 3 most mature segments
- Specific analysis of the emerging segment

5. CONCLUSION AND RECOMMENDATIONS

- Definition of 8 major findings from previous analyses
- 9 recommendations associated with these findings

Segmentation of the Value Chain | Study of 14 Equipment Segments

The hydrogen value chain has been divided into 14 equipment segments. Certain equipment were not studied as it falls outside the scope of the mandate (e.g., production by SMR) or is considered less relevant (e.g., piping). For each of these segments, in addition to interviews, 56 manufacturers were analyzed in detail to examine major trends, such as ambitions, partnerships, strategies, needs, and expectations.

=

Ō

o o

1 Production

2 Transport/Delivery

3 Storage

4 Applications

5

Other

Electrolyzers

35 manufacturers analyzed

Other Reactors for the Production of H₂

TRL>7
52 actors* analyzed

H₂ Stations

21 manufacturers analyzed

Heavy-Duty
Mobility (for
transport)
15 manufacturers

analyzed

Portable Tanks

18 manufacturers analyzed

Tanks for Stationnary Applications 23 manufacturers analyzed

Fuel Cells

31 manufacturers analyzed

Equipment for Industrial Applications

(Synthetic fuels, iron reduction, etc.)
10 manufacturers analyzed

H₂ Buses and Trucks
19 manufacturers analyzed

Compressors

17 manufacturers analyzed

Fittings and Valves

15 manufacturers analyzed

Instrumentation

16 manufacturers analyzed

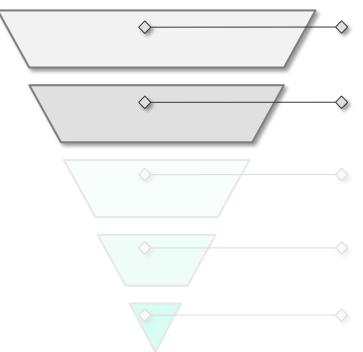
Liquefiers

10 manufacturiers analyzed

Auxiliary Equipment

19 manufacturers analyzed

*Since H_2 reactors are still emerging, the players analyzed are both manufacturers and technology solution providers.



Study of the Ecosystem | Key Challenges and Objectives

The main objectives of this stage are to analyze and understand the positioning of Quebec and international industrial and manufacturing players across the entire H2 value chain. The idea is to draw a global vision of the dynamics and market opportunities in Quebec, as well as for export, and to identify potential application sectors for the Quebec industrial and manufacturing ecosystem.

Overall Methodology

1. IN-DEPTH STUDY OF THE MANUFACTURING ECOSYSTEM

- Analysis of 350 H₂ actors (Appendix 1.A.)
- Selection of 200 actors for in-depth analysis
- Study of their strategies, ambitions, projects, partnerships, etc.
- Meeting with 30 industry players (Appendix 1.B.)

2. IN-DEPTH ANALYSIS OF H2 EQUIPMENTS

- Segmentation of the value chain into 14 segments of equipment for detailed analysis
- In-depth analysis of associated markets, major projects, critical minerals, R&D dynamics, etc.

3. SELECTION OF 4 STRATEGIC EQUIPMENT SEGMENTS

- Identification of key criteria for prioritizing segments: alignment with H_o strategy. Quebec capabilities, etc.
- Calculation of a score for each segment, then selection of the 4 most promising segments

4 ANALYSIS OF SOCIO-ECONOMICAL IMPACTS

- Selection of 9 indicators reflecting the socio-economic impact of manufacturing sector development
- Study of these indicators for the 3 most mature segments.
- Specific analysis for the emerging segment

5. CONCLUSION AND RECOMMENDATIONS

- Definition of 8 major findings from previous analyses
- 9 recommendations associated with these findings

Main Challenges

- Establish analysis at the appropriate level of detail based on a sufficient quantity of data to make informed decisions, while prioritizing efforts of which H2 equipment to study in depth
- Consider the realities and specific challenges faced by manufacturers by engaging directly with them.

Scope of Analysis

- The entire H₂ manufacturing sector for the "1.
 In-depth Study of the Manufacturing Ecosystem" phase
- The 14 H₂ equipment segments for "2. In-Depth Analysis of H₂ Equipment"

Analysis of the 14 Equipement Segments | Overview of the Study's Focus Areas

THEMATIC DESCRIPTION

State of play of technology and R&D issues

- > Main applications and markets
- > Critical and strategic components & minerals
- > Technologies, TRL, utility
- > R&D perspectives

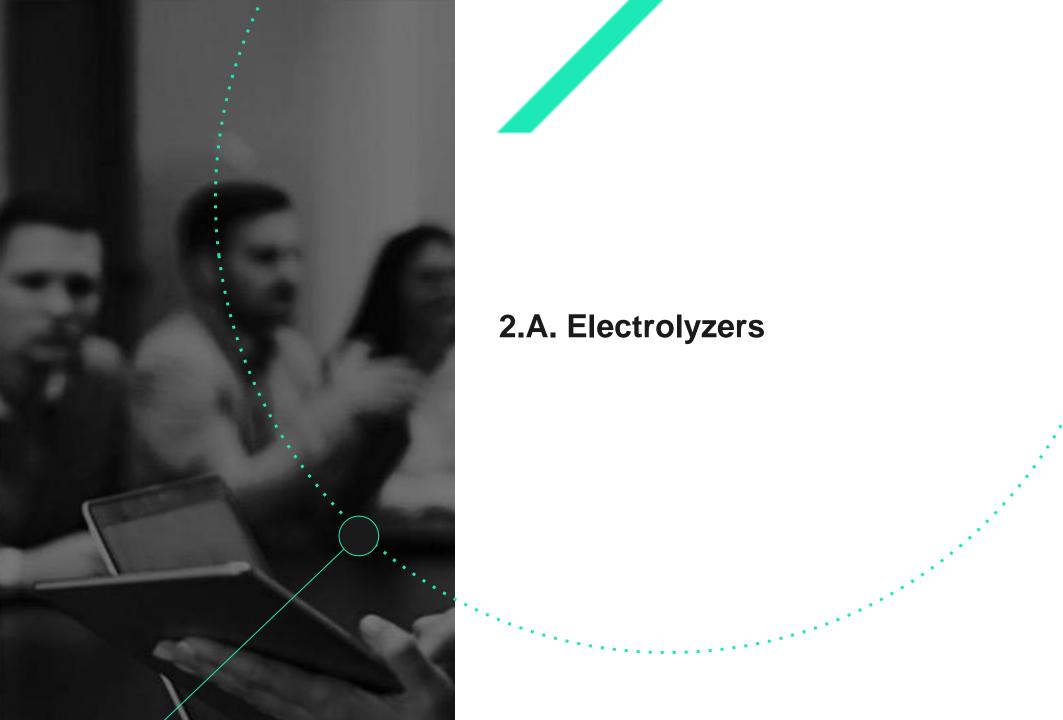
Global and Quebec market outlook

- > Global Market Value and Growth and Regional Variations
- > Dominant technology
- > Quebec's vision of these markets
- > Project dynamics in Quebec and R&D in presence

Actor typology and main manufacturing projects

- > Size and nationality of manufacturers
- > Typology of industrialists present
- > Positioning and diversification/specialization strategies
- > Classic partnerships developed

General observations on the segment and study of best practices

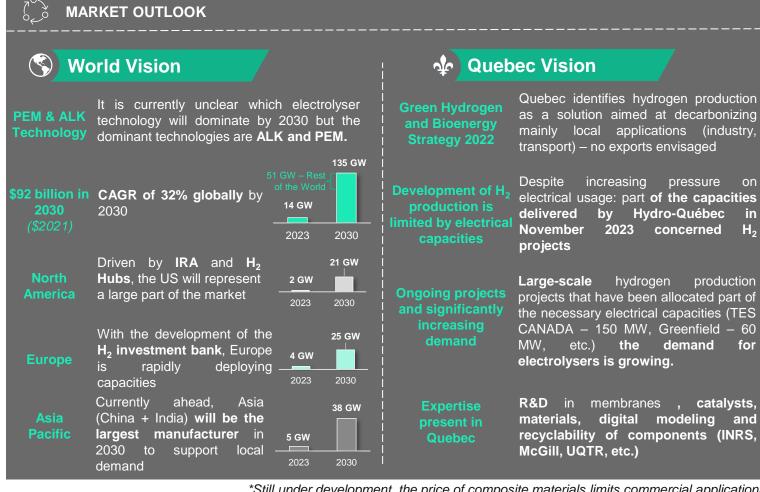

- > Analysis of the 3 most developed manufacturers
- > Study of their best practices
- > Segment Specific Observations
- > List and classification of issues identified by manufacturers

Quebec's capacity and interest in developing this segment

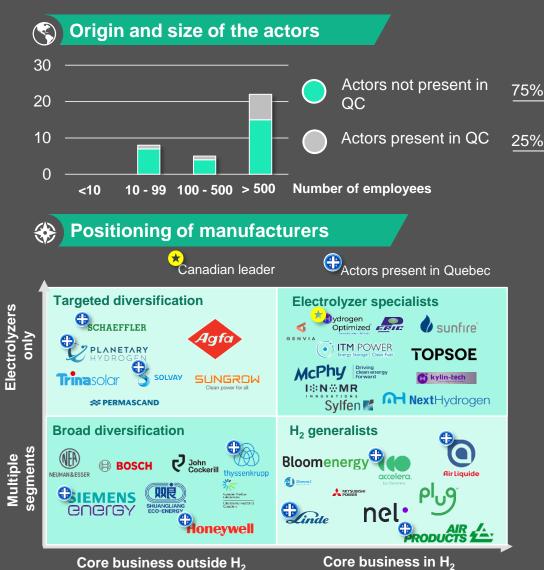
- > Analysis of Quebec's current manufacturing capacities
- > R&D players with expertise useful for the segment
- > Integration into the provincial H₂ strategy
- > Added value for the province to develop this segment

Ecosystem analysis | Global Portrait of Electrolyzers

R&D


perspectives

Electrolyzers are a key technology for low-carbon hydrogen production, and the decarbonisation ambitions of many countries are expected to drive demand in the coming years. The completion of all ongoing projects could result in an installed electrolyser capacity of 135 to 365 GW by 2030, while IEA scenarios predict a need for up to 3300 GW by 2050 (NZE). In 2023, 2.4 GW of electrolysers have been installed, and nearly 33.5 GW of electrolysers have been manufactured—a 145% increase compared to 2022.


Titanium Iron Cobalt Nickel Iridium Yttrium Molybdene Ruthenium Gadolinium Electr Memb	ar plates rodes brane / nragm / rolyte s

		ı	ı	
Techno.	TRL	Cost (\$/kW)	Barriers	
PEM	9	2500-3000	Costs	Curr
ALK	9	1000-1500	Sustainability/ Energy	echno rrent a
SOEC	6	1000-2000	Performance / Durability	nd fu
AEM	3	1000-1500	Performance / Durability	es ıture
PCCEL	2*	N/A	Performance / Durability	<u>.</u>
	ı	1	Į.	

- Discovery of new materials: To replace critical metals. Al could help model new, more economical and sustainable allovs.
- **Improved sustainability:** Work on the degradation of membranes and catalytic materials
- Recyclability of materials: As in the battery sector, there is a need to find ways to recover the metals that make up electrolysers

Projects and Actors Involved

Electrolyzers

Typology of existing actors

1. Typology of actors

- Several types of player can be found in this segment: large industrial manufacturers diversifying by acquiring H2 specialists, Chinese solar manufacturers, electrolyzer specialists (often focusing on a single technology) and chemical manufacturers for membrane production in particular.
- Most of the companies studied are multinationals (over 66% have more than 500 employees), with a strong capacity to invest in new production lines and experience in scaling up.

2. Positioning in the H₂ value chain

> In this segment, manufacturers specializing in electrolyzers coexist with players diversifying within the H₂ value chain. Those who are diversifying are mainly positioned in auxiliary equipment, H₂ stations and FCs (significant technological complementarity between FCs and electrolysers).

3. Typical partnerships

- Players wishing to expand in Asia often form alliances to develop their plants (Genko & John Cockerill; Cummins & Sinopec).
- Manufacturers join forces with historical H₂ players to secure their order books and share expertise and risk (Siemens & Air Liquide).
- Partnerships are also being formed with upstream chemical manufacturers to secure membrane supplies (Plug Power & Johnson Mattey) or downstream to offer complete solutions (Hydrogen Optimized & ABB).

1 GW in Belgium

1 GW in Spain

1 GW in China

Major manufacturing projects

John Cockerill

1 GW in India

4 GW under construction 4 GW under construction 1 GW in Berlin 1 GW in Minnesota 1 GW in the US Plans to expand 1 GW in Europe the plant's capacity 1 GW in China to 3GW by 2025

Plans to expand their factory which will create up to 50 jobs

Core business in H₂

Positioning and Quebec Vision | Electrolyzers

Manufacturers are expanding rapidly, mainly in response to demand, and where infrastructure and manpower are available. Quebec meets the majority of manufacturers' needs but faces the challenge of a shortage of skilled labor and relatively low demand compared to the rest of Canada and the US.

Observations on the electrolyser segment

Analysis of key players

Cummins | PEM & ALK

73 600 employees (total) Strong presence in Quebec: Bécancour, Varennes, etc. 500 MW Electro. with Chevron

Manufacturers often expand through takeovers alliances in search of H₂ expertise or local knowledge.

John Cockerill | ALK

6 500 employees (total) Ambition of 8 GW by 2025 Most powerful ALK cells (6.5 MW/cell)

92 000 employees (total) Uses its know-how to offer complete solutions (BoP, etc.)

Other observations on the segment

SOEC technology - Although less mature, this technology is developing very rapidly, with players such as Topsoe (5 GW by 2025), Genvia and others.

SCM - Some of the manufacturers we met are well aware of the tensions on certain SCM and do not publish their ambitions to avoid driving up prices.

S Issues Identified

Ability of ecosystem players to scale	0000
2. Difficulty in anticipating demand to calibrate capacities	0000
3. Standardization of technologies / projects	0000
4. Component supply issues	0000

Focus on Quebec's manufacturing capabilities

From a manufacturing point of view, several manufacturers operate in Quebec, but no electrolyser production plants are located there.

Interviews with manufacturers show a growing interest in Canada and Quebec, with major projects such as TES, Greenfield, etc. helping to secure demand.

H₂ production helps decarbonize local needs

Quebec's Strategic Interest

The strategy identifies green H₂ as a significant opportunity to decarbonize industries locally

Complementary sectors

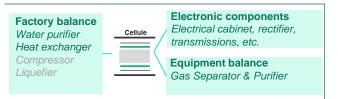
> Polluting industries in QC, particularly chemicals, steel and refineries, would benefit from the presence of green H₂

Quebec's strengths partially meet the needs of industrial actors

Quebec's Capacity

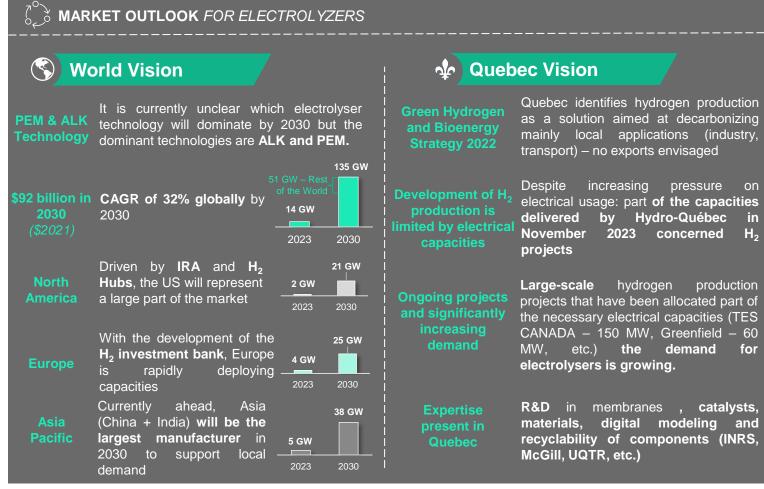
1. Need for very strong local demand **Average** 2. Proximity to train/deep water port **Important** 3. Political will to support manufacturers **Important** 4. Presence of existing infrastructure/spaces **Important** 5. Skilled workforce and subcontractors present Average

> Relative importance of indicators

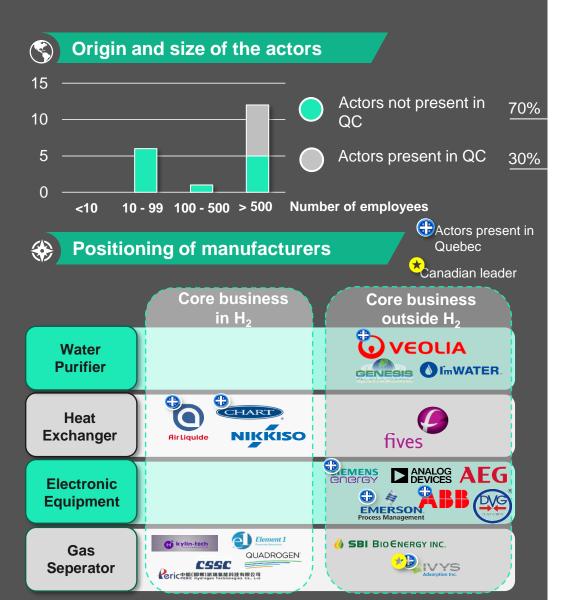


Ecosystem Analysis | Auxiliary Equipment

R&D p


Auxiliary equipment comprises **components and systems required for the efficient operation of an electrolyser**. These play a critical role in the overall performance and economic viability of projects. In the drive to make electrolysers more efficient and profitable, auxiliary equipment is essential for reducing costs and enhancing system durability. From a market perspective, the **dynamics vary significantly for each piece of equipment**; however, all are closely linked to the dynamics of electrolyser cells and will therefore be treated as similar in this analysis.

SCM



Equipment	Purpose	
Water purifier	The water used for electrolysis must be demineralized and deionized, particularly for PEMs.	(Curre
Heat exchanger	Getting the right operating	nt ar
Power electronics equipment	Supply the electrolyser with a direct current and at the correct intensity	irrent and future,
Gas Separator & Purifier	To separate H2 water vapor and oxygen	

- Heat exchanger: improve system safety (leaks), reduce size and simplify maintenance
- Water purifier: reduce purification costs and energy requirements
- > **Electronic equipment:** ability to manage intermittent power supply (renewables, peak management)
- Gas separator: reduce process energy requirements and associated

Projects and Actors Involved

Auxiliary Equipment

Typology of present actors

1. Typology of actors

- > The majority of players in these segments are specialists in their respective equipment (purifier, exchanger, power electronics, etc.), whose core business is generally not H₂.
- > Players positioning themselves in H₂ separation/purification are mainly companies with a history in the oil and gas sector, who are converting to low-carbon H₂ (SBI Bioenergy Inc., Ivys Adsorption). The processes are in fact similar, enabling these companies to capitalize on their expertise.

2. Positioning in the H₂ value chain

> In addition to players specializing in their segment, several companies are H2 generalists (Air Liquide, Chart) or electrolyser producers seeking to internalize several components of the final solution (Kylin Tech, Peric, Siemens).

3. Typical partnerships

> Auxiliary equipment manufacturers are developing through partnerships with electrolyser manufacturers (Véolia & PEM electrolyser manufacturer confidential; Chart & McPhy).

Major manufacturing capacities

Spain, Germany, Singapore, China

+20 Transformers-Rectifiers sold for H2 production projects Veolia

Spain, Germany , Slovakia, etc.

+8000 water treatment units built and installed (not only H2)

lvys adsorption

Quebec

+350 AMP for H 2 installations Factory in Montreal employs +80 employees

Positioning and Quebec Vision | Auxiliary Equipment

Given the complexity of each piece of equipment in this segment, and the diversity of associated expertise (fluid mechanics, power electronics, thermodynamics, chemistry, etc.), few electrolyzer manufacturers venture to integrate this stage. Nevertheless, Quebec has recognized **expertise in gas separation**, with the presence of lvys and its plant in Montreal.

Observations on the auxiliary equipment segment

Veolia

>500 MW

220 000 employees

Analysis of key players

AEG

11 000 employees Develops complete turnkey systems (transformers, rectifiers, etc.) for H₂

manufacturiers d'électrolyseurs

Possibility to adapt to electrolyzer

technology and obtain powers

lvys adsorption

Formerly Xebec , was

acquired in 2023 by Ivvs

following its bankruptcy

130 employees

Other observations on the segment Secondary sector - For the majority of auxiliary equipment manufacturers, H2 is a secondary market accounting for a small share of sales.

Difficulty of integration electrolyser manufacturers are positioned in these segments, which require specific expertise.

_____Issues Identified

1. Standardization of projects and technologies	0000
2. Component supply issues	0000
3. Technologies & markets interdependent with other solution	ons OOO
4. Risk of developing specific H ₂ solutions	0000

Focus on Quebec's manufacturing capabilities

On the manufacturing side, Ivys Adsorption (formerly Xebec Adsorption) has a major manufacturing center in Montreal that develops gas purification systems. Despite the takeover in 2023 by Ivys (based in the USA), the Montreal plant continues

to recruit, and prospects for green gas production (H₂ & RNG) benefit the company.

The interest is slightly less than for electrolysers

Quebec's Strategic Interest

H₂ Strategy & Industries to Decarbonize

To produce H₂ locally, this auxiliary equipment will be necessary to accompany the electrolysers

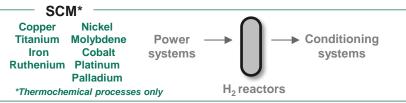
Added value a little less important

Due to its dependence on the electrolyser market and the lower technological content, the added value is lower

Quebec's capacity is strengthened by the presence of Ivys

Manufacturing

> In addition to Ivys and its factory in Montreal which employs 130 people, several players in this segment are very present in Quebec but without a local equipment production plant (Veolia, Air Liquide, Chart Ind., etc.)


> Relative importance of indicators

Ecosystem Analysis | H₂ Reactors

Although electrolysis production is at the heart of hydrogen projects and announcements, hydrogen is still predominantly produced through steam reforming (SMR: grey H2). Other hydrogen production methods fall into two categories: thermochemical processes and biological processes. This equipment segment includes reactors used in processes such as biomass gasification, plasma pyrolysis of biomethane, dark fermentation, photo-fermentation, and sequential fermentation (NMT >7). The selection and commercialization of green hydrogen production equipment rely on comprehensive techno-economic analyses, including cost driver assessments, exploration of cost-competitiveness strategies, and identification of factors influencing production costs. Additionally, the elimination and/or valorization of co-products from these reactions are critical challenges for achieving sufficient hydrogen purity and developing robust business models

Process	TRL	Barriers and needs	
SMR POX	9 9	Improved catalysts CO management and control	(Cur
Biomass gasification Plasma pyrolysis	9 9	Profitability and by- products (Sulfur) MTR Performance/Durability	Current and
Dark fermentation Photofermentation Sequential ferm.	8 8 7	Adapted microorganisms Adapted microorganisms Adapted microorganisms	future) BIOLOGICAL

- Thermochemical processes: Al to model new types of catalysts (zeolites) and model the logistics of biomass collection and transport (biomass gasification)
- **Biological processes**: Further studies to develop dark fermentation, photofermentation and enzymatic approaches
- Synergistic approaches: R&D to design hybrid thermochemical and biological systems to address the limitations of individual processes

R&D

perspectives

MARKET OUTLOOK

World Vision

\$1.9 billion by 2050

The green hydrogen production market will result in increasing demand production equipment (electrolyzers and other H₂ reactors)

A transition

Historically produced by steam reforming, the transition to green H₂ is mainly driven by electrolysis technologies, but several other production routes are possible and are detailed below.

Positive

The green hydrogen production market will make it possible to:

- Create **2 million jobs** per year CO_2 85 cumulative emissions bv gigatonnes

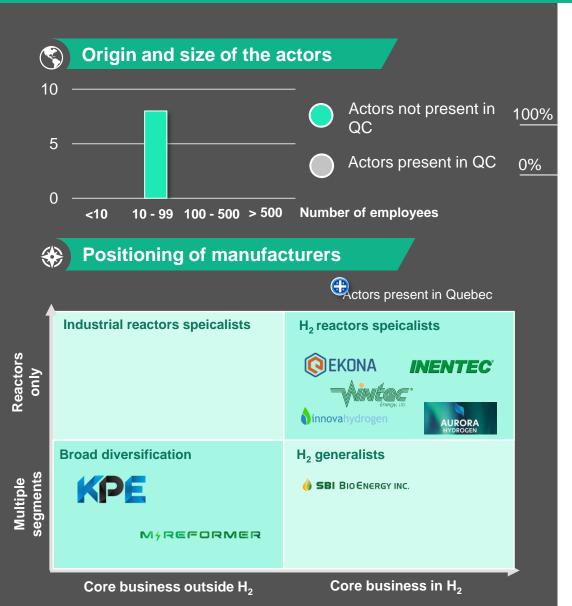
Policies and investments are multiplying at the level of green H₂

The major projects announced are primarily focused on electrolysers (with import/export partnerships for example), but the momentum is growing on other green

Quebec Vision

and Bioenergy Strategy 2022 Quebec identifies hydrogen production as a solution aimed at decarbonizing mainly local applications (industry, transport) – no exports envisaged.

Majority demand for electrolysers


With recent large-scale hydrogen production projects , electrolysis processes are the most dynamic among the means of producing green hydrogen; in particular because the reduction in GHG emissions is often greater

Supporting the piomass recovery Biomass gasification is an alternative to its incineration which reduces GHG emissions

It is also an alternative to the burial of waste which is still very widespread in QC (CRD, medical, etc.)

Expertise plasma pyrolysis processes held by universities and centers (Polytechnique, research McGill. INRS. UQTR. CEPROCQ. Concordia, Sherbrooke, etc.)

Projects and Actors Involved

H₂ Reactors

Typology of existing actors

1. Typology of actors

- > The majority of players in this segment are small companies specializing in H₂ reactors.
- > Most manufacturers provide solutions for thermochemical processes, since biological processes are still at laboratory or pilot scale.
- > Players are distinguished by their technologies and patents held

2. Positioning in the H₂ value chain

- The majority of players are hydrogen reactor specialists who are not positioned in other equipment segments of the value chain.
- > The majority of players are **assemblers of hydrogen production equipment**; low TRL and to market their technologies, technology owners **outsource manufacturing** (e.g. KP Engineering manufactures Omni Conversions systems; MMM Energy manufactures for Element One).

3. Typical partnerships

- Most manufacturers are developing **strategic partnerships with research and development organizations** (Aurora Hydrogen & University of Toronto; Inentec & MIT; Innova Hydrogen & University of Alberta...) to optimize their technologies.
- > Partnerships are also being forged with industry to develop customized solutions (Development of a new methane pyrolysis technology: Ekona & TransAlta; Integrated hydrogen production system: Integrated solution for hydrogen production from waste: KP Engineering & Omni Conversions).

Major manufacturing capacities

Reactors producing H₂ from bioethanol 1 site of 35,000 sq. ft

Omni200 Units from Omni Conversions 2 sites in the United States

Reactors: Nocatalytic pyrolysis of methane 1 site in CB

Demonstration of H2SX technology: microwave plasma

Positioning and Quebec Vision | H₂ Reactors

The majority of technology owners in this segment outsource reactor manufacturing to specialized engineering firms. **R&D plays a central role in this segment**, and industry players often collaborate with research organizations. Quebec is well-positioned to address the R&D needs of this segment; however, its manufacturing expertise remains less developed compared to the rest of Canada.

Observations on the H₂ reactors segment

Analysis of key players

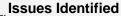
25 employees Expands by creating partnerships to implement its Golu-H2 reactor

Manufacturers often grow through partnerships with technology owners or end users for specific applications.

KP Engineering

118 employees Develops through expertise in the manufacturing of hydrogen systems

59 employees Expands by outsourcing the marketing of its technology platform for xCaliber reactors



Marketing of xCaliber reactors

Other observations on the segment

Competition – This segment is in close competition with that of electrolysers which for the moment attracts the most interest and investments

R&D – Highly dynamic R&D to accelerate the commercialization of low TRL technologies (dark fermentation, photofermentation and sequential fermentation)

1330c3 Identified	
1. Ability of ecosystem players to scale	0000
2. Demand still too low to justify large-scale manufacturing	0000
3. Risk in the choice of the marketed process	0000
4. Custom manufacturing dynamics	0000

Focus on Quebec's manufacturing capabilities

From a manufacturing standpoint, **no player operates in QC**. The majority of players have operations in Canada or the United States. In Quebec, the focus is more on electrolyzers as the equipment of choice for green hydrogen production by both manufacturers and project developers. However, Quebec has **distinguished R&D expertise** in this segment, and investments will help future commercialization of the associated technologies.

Meeting decarbonization needs

- The development of a **manufacturing ecosystem** for H₂ reactors would enable QC to reduce emissions from SMR processes, while supporting the biomass recovery sector (vs. incineration).
- However, demand for this equipment segment remains very low compared with that for electrolysers (dynamics to be monitored).

Quebec's Capacity

Quebec's Strategic Interest

An underdevelopped manufacturing ecosystem

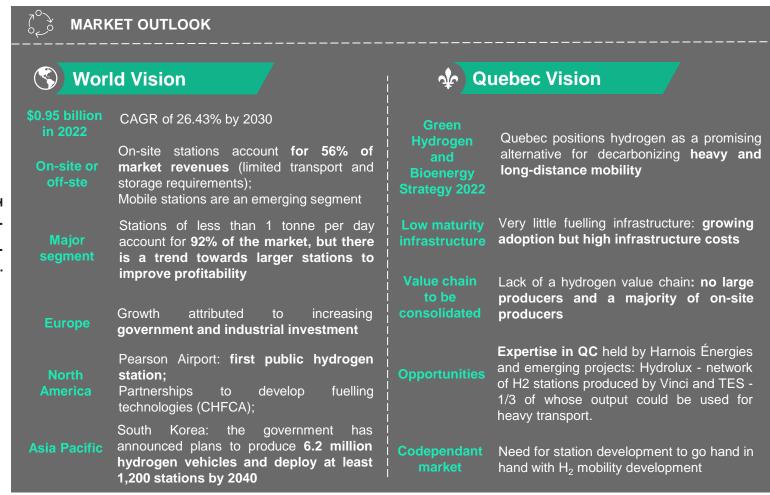
R&D expertise

 Expertise in plasma fermentation and pyrolysis processes from McGill, UQTR, Polytechnique, etc.

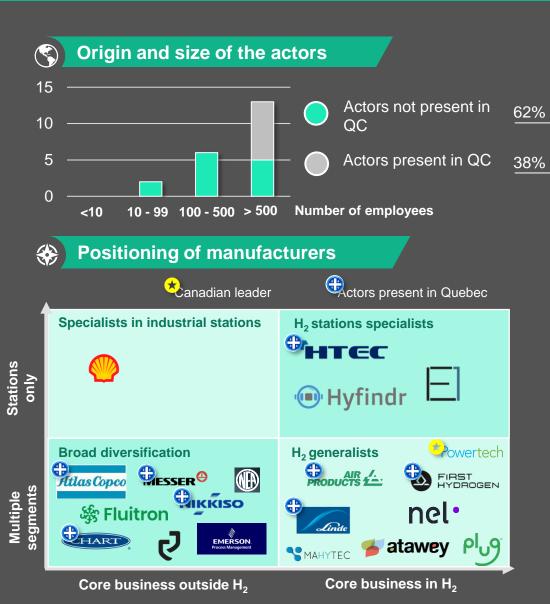
Manufacturing ecosystem

No identified player in QC capable of producing H₂ reactors, but presence of specialized firms with complementary skills (Pyrogenesis: manufacture of plasma torches).

Relative importance of indicators


Ecosystem Analysis | Global Portrait of Hydrogen Stations

Hydrogen stations are critical for the adoption of hydrogen propulsion technologies. Despite the growth in the number of stations, their dynamics are less significant compared to those observed for electric charging stations. **Hydrogen stations require various auxiliary equipment**, including piping, storage systems, compressors, liquefiers, hydrogen production equipment, evaporators, cryogenic pumps, and dispensers. Two systems coexist (gaseous and liquid), which can be implemented in two configurations depending on the need (on-site or off-site). Today, there are more than 1,000 hydrogen stations worldwide, with China accounting for a third of these installations. **Gaseous hydrogen stations enable refueling at two distinct pressures: 350 bar or 700 bar**, depending on the type of vehicle.


SCM Compressor Tank Copper I_{M} **Titanium** 888 Inox (Nickel) H₂ production Distributor **Platinum** Cobalt Evaporator Graphite H₂ heavy transport Cryogenic Tank **Pipelines** Liquid

Туре	TRL	Energy demand*	Advantages	Disadvantages	(Cu
Gaseous	9	4.21 kWh/kg *Transition from 10 à 55 MPa	350 bars Capacity 700 bars Refueling time	350 bars FCEV spectrum 700 bars Less capacity	echnologie
Liquid	9	8.57 kWh/kg	High capacity	High costs	ture)

- > **Liquid storage**: R&D to develop Portable liquid storage: promising storage density but energy-intensive liquefaction & evaporation
- Weather: Researches solutions to address challenges related to extreme weather conditions: H₂ leaks at dispensers amplified by winds
- Modularity: Modular design to allow scalability of technologies
- > Interoperability: Standardization to enable interoperability and compatibility between manufacturers

Projects and Actors Involved

H₂ Stations

Typology of existing actors

1. Typology of actors

- Most players are multinational companies focused on manufacturing H2 stations, with hydrogen as their core business. These companies are expanding their technology portfolios by integrating other equipment into the value chain (e.g., Linde and Nel: electrolyzers).
- > **Significant disparity in the number of fuelling stations deployed**: 5 to 300 stations deployed. Some projects are undergoing trials, while others are being implemented on a commercial scale.

2. Positioning in the H₂ value chain

- > In the manufacturing chain, they are mostly **assemblers**. Some integrate the **manufacture of sub-components:** (Linde: cryogenic pumps and ionic compressors).
- > Other players identified during the analysis specialize in **sub-components only**: compressors (Neuman & Esser), cryogenic pumps (Fluitron), liquefiers (Chart).
- > Hyfindr offers **fuelling stations at two pressures (350 and 700 bar)**, covering all existing H₂ propulsion technologies.

3. Typical partnerships

- > The majority of large-scale manufacturers are developing strategic partnerships with players specializing in the manufacture of electrolyzers to include an H₂ production unit in their stations (Messer & Siemens; Nel & SFC Energy).
- Development of turnkey solutions: production integration (Nel & SFC Energy), transport and distribution (Toyota & Messer; First Hydrogen)
- Some partnerships with end-users to secure demand: Fuel Element & Nikola; Cummins & Air Products

Major manufacturing projects

Future capacity: 300 stations/year 50 stations deployed

5 stations planned inNorth America60 stations deployed

Capacity that will triple
200 stations deployed

400 stations by 2025 25 stations deployed

Positioning and Quebec Vision | H₂ Stations

The key players in hydrogen stations stand out for their ability to absorb the high costs of manufacturing and operating the fuelling infrastructure by building solid business models. These are the two major barriers to entry in this segment. In Quebec, although demand for fueling stations is growing, few players have been identified as capable of setting up substantial manufacturing capacity. despite a few announced projects.

Observations on the H₂ stations segment

Analysis of key players

556 employees Largest industrial capacity Produces electrolysers

Developed partnerships

The manufacturers that are scaling up are those that are able to secure auxiliary equipment to hydrogen stations.

Plug Power

3 353 employees 3 manufacturing sites Takes care of the manufacture of distributors

74 207 employees 1 manufacturing site Produces ionic compressors and cryogenic pumps

Other observations on the segment Interdependent markets - Manufacturers hesitant to build hydrogen-powered cars due to lack of refueling infrastructure and vice versa

Specialization trends – Generalist players tend to specialize and abandon certain segments (Purchase by Atawey of the H₂ Stations division of Mcphy)

Issues Identified

7 ×	
1. Standardization of fueling pressures	0000
2. Economic competitiveness compared to alternatives	0000
3. Absence of large hydrogen producers	0000
4. Ability of ecosystem players to scale	0000

Focus on Quebec's manufacturing capabilities

1 seul acteur balisé est présent au QC: HTEC (dont les stations sont fabriquées par Plug Power). Malgré la présence d'autres acteurs au QC, leurs projets anNocés se font hors-QC (Linde, Air Products). Les entretiens réalisés ont listé First Hydrogen comme potentiellement intéressé de développer des activités manufacturières au Québec (véhicules FCEV) en offrant une solution clé en main pour ses clients du secteur de la mobilité lourde (intégration de services d'avitaillement)

Producing stations serves the decarbonization of transport

Provincial decarbonization targets

- The Quebec government aims to reduce its GHG emissions by 37.5% by 2030 and transportation accounts for 44% of these emissions.
- Furthermore, the provincial strategy for green H₂ identifies heavy transport as a **medium priority outlet** for H₂.

Quebec's Strategic Interest

Low demand for the moment

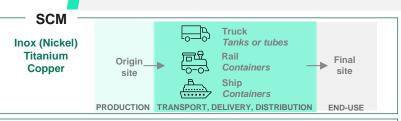
Complementary expertise present at QC

> Ability to meet the needs of manufacturers and station operators: Harnois Énergie is a proven player in the operation of hydrogen stations and the integration of billing processes

Manufacturer

> Few/no QC players identified capable of producing stations on a large scale but emerging dynamics (7 hydrogen stations announced by Hydrolux and produced by Vinci) and low demand for the moment

> Relative importance of indicators



2.E. Heavy-Duty H_2 Mobility (For the transport of H_2)

Ecosystem Analysis | Global Portrait of Heavy-Duty H2 Mobility

There are several methods for transporting and distributing hydrogen: pipelines (long-term supply), trucks, ships, and trains (short- to medium-term supply). The focus of H2 transport is primarily on ships and pipelines, rather than heavy-duty truck transport, which has been widely used for decades (via cryogenic or pressurized transport). Hydrogen can be transported in three forms: gaseous, liquid, or via carrier molecules. Carrier molecules are primarily used for export applications by ship and truck (e.g., liquid ammonia, methanol, and LOHC). In Canada, hydrogen transport by pipeline is under close consideration, with Enbridge leading initiatives in the industrial sector. However, this analysis emphasizes hydrogen transport via H2 heavy-duty mobility, which is better aligned with Quebec's context of centralized production and short- to medium-term supply needs.

Method	TRL	State	ate Barriers and needs	
Truck	9	Gaseous	Storage capacities Pressure limits Certification of new approaches	(Cu.
HUCK	3	Liquid	Cost reduction and evaporation Capacity increase	Technologies (Current and future)
Rail	7	Gaseous	Storage capacities Pressure limits Certification of new approaches	2 6
	Kali		Liquid	Safety; Cost reduction (weight) Low capacity
Ship	7	Liquid Carrier molecules	rrier Technology maturity	

- Alternative alloys: R&D for the development of new corrosion-resistant alloys
- Sensors: Next-generation sensors will need to multiply to meet the growing needs in terms of the quality of hydrogen transported in tanks; new sensors will be able to use the following 4 types of technologies: AF, Al, printed electronics with RFID antennas, and quantum dots for optical sensors

MARKET OUTLOOK

World Vision

At the heart of the debate Compromise between centralized **production** and developed hydrogen transport infrastructure & decentralized production with distribution costs (-) but high production costs (+) (Influence on H2 cost)

Truck transport:

Tank trucks (liquid): most widespread and economical method for long-distance H2 transport (high capacity)

Pipe trailers (gas): shorter distances (capacity limited by weight of Portable tanks)

to be

R&D efforts and investments to develop new technologies such as carrier molecules for high-density transport - e.g. Chiyoda Corporation: SPERA LOHC technology demonstration (210 tons per year)

US-led simulation and optimization work: DOE performs H2A Delivery Analysis to optimize H₂ transport technologies for enduse scenarios.

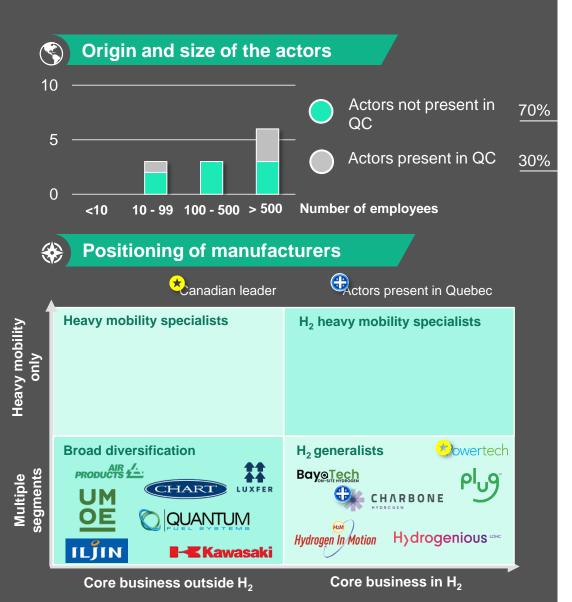
Quebec Vision

Targeted industrial and refueling applications that will drive demand for H2 transportation: need to get H2 from the place of production to the place of use:

Green hydrogen production for local needs

No exports planned: deliveries mostly local (between producers and users);

- Trucks: most suitable segment
- Ships: underdeveloped
- Rail: lack of standards and less attractive for large quantities


targets

Heavy-Duty vehicles used for H2 transport are expected to be electrified, otherwise an analysis of the associated emissions is required to justify this use.

Conecessary

Particularly in terms of adapting Type 4 tanks to a scale compatible with H2 transport operations.

Projects and Actors Involved

Heavy-Duty H₂ Mobility

Typology of existing actors

1. Typology of actors

- > The majority of players are diversifying manufacturers whose core business is not hydrogen, and H₂ generalists whose core business is hydrogen. No heavy mobility specialists have been identified for H₂ transportation.
- > Manufacturers supplying technologies mainly in the **heavy-duty truck segment** for transporting hydrogen (liquid or gaseous).

2. Positioning in the H₂ value chain

- > A majority of generalists are positioned on **several links in the hydrogen value chain** (Charbone, Chart, Air Products, Bayotech, etc.).
- > Two main profiles: manufacturers of Portable or stationary tanks who internalize tank production (Luxfer, Iljin) or manufacturers of hydrogen stations (Plug Power, Powertech, etc.).
- Most players are assemblers of the final solutions used in this segment (truck/ship/train: outsourced + tanks/tubes/tanks: in-house).
- > Hydrogenious has been identified as a **specialist in the transport of hydrogen** by ship and train in the form of LOHC.

3. Typical partnerships

- > Partnerships with **heavy-mobility manufacturers** (e.g. BayoTech & Nikola: H₂-powered heavy-duty trucks for hydrogen transport)
- Partnerships between H₂ generalists and tank manufacturers to provide complete H₂ transportation solutions (BayoTech & Luxfer; Luxfer & Octopus Hydrogen; Powertech & NPROXX)

Key manufacturers

United States

50 trucks purchased for H₂ transport applications by Chevron

Manufacturing capacity x5 in 18 months 55 years of experience in H₂ transport

Trucks for H₂
transport: internal
technology tested in
+250 projects

Acquisition Lifte H2 Largest capacity available on the market (1.2 tonnes of compressed H2 gas at 550 bars

Positioning and Quebec Vision | H₂ Heavy-Duty Mobility

The dynamics of this segment are mainly driven by the formation of partnerships for the construction of complete hydrogen transport solutions. In Quebec, the growth in demand stems from the need to meet local hydrogen requirements, transporting hydrogen from the point of production to the end point. Quebec has the R&D expertise to further develop tank transport capacities, but demand does not vet justify the deployment of an extensive distribution network, despite the presence of several players.

Observations on the H₂ stations segment

Analysis of key players

BayoTech

101 employees Development of a hydrogen hub in Missouri BayoGaas (hydrogen production and delivery)

5 200 employees Growing through acquisitions: James Russell Engineering Works, GOFA, VRV

Air Products

19 275 employees H2fM trademarked technology used in 20+ countries

Manufacturers in this segment are teaming up with partners to secure the building blocks of the final solutions (heavy mobility and/or storage tanks)

Retrofitting heavy trucks with cylinders for H₂ transport

Other observations on the segment

Influence on the price of H₂ - The dynamics of this segment have a strong influence on the price, which must take account of variations in distribution costs depending on the world of transport.

Flexibility - The risk involved in developing a specific technology is offset by the flexibility associated with truck transport (e.g. Chart's plan to also provide H₂ gas transport solutions).

Issues Identified

1. Immature distribution models and infrastructures	0000
2. Demand still too low to justify large-scale manufacturing (centralized production)	0000
3. Co-development of complementary technologies	0000
4. Challenges regarding the robustness of technologies	0000

Focus on Quebec's manufacturing capabilities

From a manufacturing point of view, 4 players are present in QC (Air Products, Charbone, Chart Ind. and Luxfer), but their manufacturing activities take place outside QC. Observed demand is mainly local, and H₂ transport distances remain fairly short; the electric trucking sector is well developed in QC and would justify the use of heavy-duty trucks for H₂ transport over short distances.

Towards a decentralized production

- A shift from centralized to decentralized production is observed, with hydrogen generation projects multiplying (TES, Greenfield): need to develop transport technologies to meet distribution and delivery needs.
- Growing need for hydrogen supplies for synthetic fuels, green steel and refueling station applications.

Quebec's Capacity

Quebec's Strategic Interest

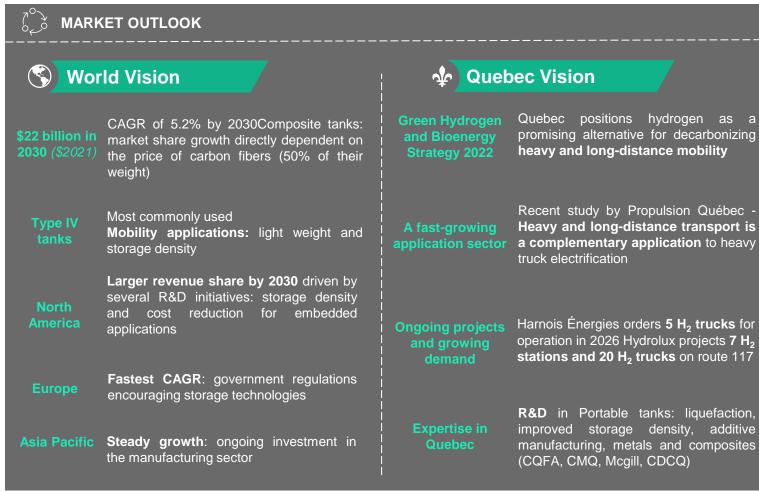
Meeting R&D challenges and responding to needs

- R&D on valves to control leakage issues and to continue developing tank technologies that will enable higher-capacity H₂ transport (ETS, ULaval, Polytechnique Montréal, McGill).
- Industrial expertise held by Air Products, Charbone, Chart Ind., Luxfer and Air Liquide
- Complementary industrial expertise: heavy-duty trucking is already a strong presence in QC.

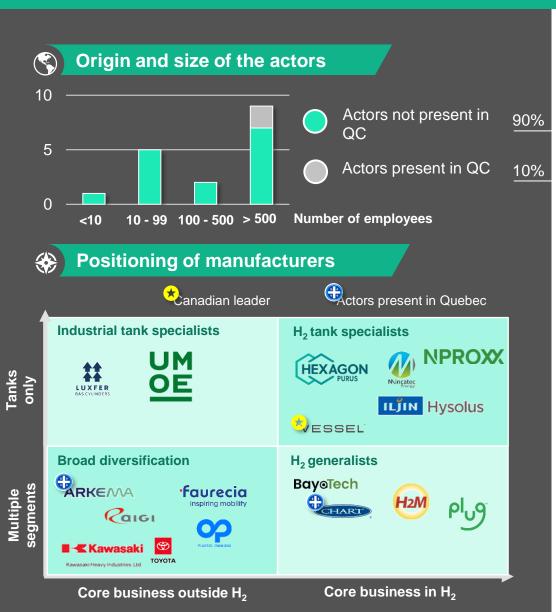
indicators

Ecosystem Analysis | Global Portrait of Portable Tanks

Portable tanks are one of the many methods of storing hydrogen. Unlike underground and above-ground tanks used for stationary applications, portable tanks are designed for road, air, or sea transport. Their composition varies depending on the application, but they are generally made of carbon fiber or stainless steel. Type IV tanks are the most commonly used due to their lightweight construction and high hydrogen storage density. While some liquid/cryogenic storage applications are under consideration, gaseous storage, as presented in the Technologies section, remains the most prevalent.


SCM Valves Composite wall Copper **Titanium** Inox (Nickel) Metallic (Type III) Polymer (Type IV) Absent (Type V)

Туре	TRL	Cost	Weight	Applications	
Туре І	9	++	-	Stationnary	
Type II	9	+	=	Stationnary	
Гуре III	9	-	+	Portable	
Туре IV	9	-	++	Portable	_
Гуре V*	7	++	+++	Portable	FUTURE


- Additive manufacturing: for the repairability of stainless
- steel systems which are weakened at high pressures

 Robustness of safety systems: R&D for a design at the same level as for current internal combustion engine vehicles

 Liquid and solid storage: R&D to develop Portable liquid storage (mature technology but promising storage density but energy-intensive liquefaction & evaporation) and LOHC storage applications

*Tanks without liner, composite wall only; still under development, the price of composite materials limits commercial applications

Portable Tanks

Typology of existing actors

1. Typology of actors

- > The 3 main types of player in this segment are multinationals whose core business is not hydrogen, manufacturers of industrial gas tanks who are diversifying with H₂, and SMEs with a technological specialization (innovative, lighter tanks, etc.).
- > There are wide differences in the production capacities of the players. The players' strike forces are very uneven: from less than 100 tanks sold to over 100,000 tanks a year.

2. Positioning in the H₂ value chain

> The majority of players are **specialists in Portable tanks** and are not developing other hydrogen solutions. Those who diversify offer more complete systems for transport/storage (H₂ trailers, stationary storage applications, etc.).

3. Typical partnerships

- > Most of the largest manufacturers (>500 employees) (Faurecia, Plastic Omnium, etc.) are developing **strategic partnerships with H₂ mobility players** (Hyzon, Symbio, etc.).
- > Partnerships are also being forged within **supply chains** to source composite materials, carbon fiber, etc. (e.g. Faurecia & Arkema).

Major manufacturing projects

Allenjoie – In operation

100,000 tanks/year Production capacity multiplied by 10

+100,000 tanks/year
Largest hydrogen tank plant in
the United States

80,000 tanks/year 700 bar tanks, 200 jobs created on site

Positioning and Quebec Vision | Portable Tanks

The key players in Portable fuel tanks stand out for their technological innovation and ability to form partnerships with hydrogen mobility players to secure demand. In Quebec, although demand for tanks is growing, few players have been identified as capable of installing significant manufacturing capacity.

Observations on the Portable tanks segment

Analysis of key players

Plastic Omnium

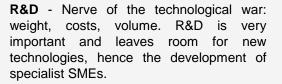
28 330 employees Largest industrial capacity (180,000 tanks/year) 40% lighter tanks

110 000 employees 50 manufacturing sites (100,000 tanks/year) Develops with partnerships

1 350 employees 7 manufacturing sites (70 million tanks in use)

Developped partnernships

Manufacturers moving to scale work hand in hand with hydrogen mobility players



Other observations on the segment

New competitors - Some H₂ mobility players are moving back into tank production (e.g. Toyota).

Issues Identified

1. Standardization of H₂ transport **pressures** 0000 0000 2. Component supply issues 0000 3. Ability of ecosystem players to scale 0000 4. Difficulty in anticipating demand to calibrate capacities

Focus on Quebec's manufacturing capabilities

From a manufacturing point of view, only 2 players operate in QC: Chart Ind. and Arkema, but it's not clear whether their QC activities are H2-related. The manufacture of these tanks could be handled by existing specialist SMEs in the aeronautics sector, which could be identified through the STIQ or RICQ.

Producing reservoirs helps decarbonize transport

Quebec's Strategic Interest

Provincial decarbonization targets

- The Quebec government aims to reduce its GHG emissions by 37.5% by 2030 and transportation accounts for 44% of these emissions.
- Furthermore, the provincial strategy for green H₂ identifies heavy transport as a **medium priority outlet** for H₂.

Although R&D is dynamic, few manufacturing players are present

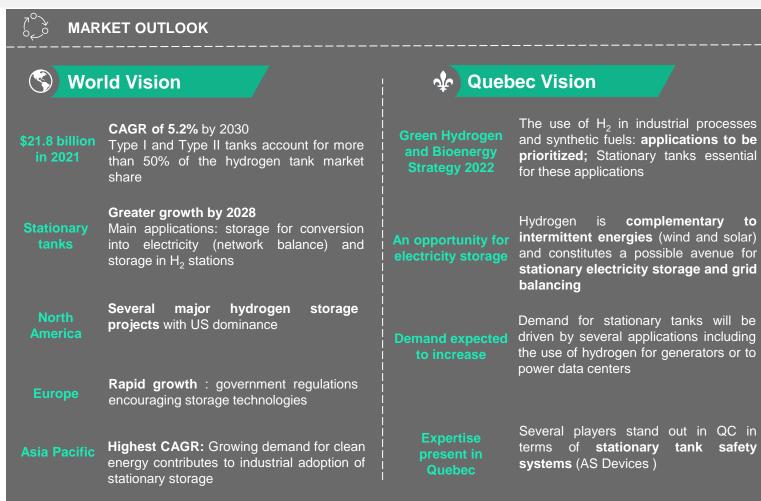
Quebec's Capacity

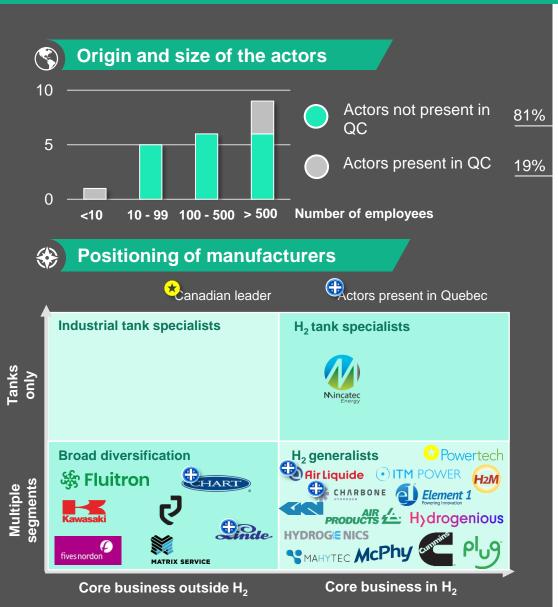
R&D expertise

> R&D is key in this market segment where there is still plenty of room for technological innovation. In QC, the CQFA is the one-stop shop where stakeholders are grouped together to work on additive manufacturing issues.

Manufacturer

Existing specialist SMEs could potentially produce this equipment


Ecosystem Analysis | Global Portrait of Stationnary Tanks


Stationary tanks are one of the many ways of storing hydrogen. Unlike portable tanks, stationary tanks are used for medium- to long-term storage. Their composition varies according to their use, but they are generally made of steel and aluminum. Type I tanks are used for subsea applications or large-scale industrial storage, while Type II tanks are suitable for higher pressures (300 bar) thanks to their filament liner, which gives them greater rigidity. Stationary tanks are used in a number of applications: temporary storage after production, storage for conversion into electricity, storage in refuelling stations and storage for use in industrial processes. Hydrogen can be stored in various forms: liquid, gaseous or solid.

SCM Titanium Platinum Inox (Nickel) Liner Carbon fibre or fiberglass (Type II)

Туре	TRL	Cost	Maximal pressure	Weight	Applications
Type I	9	++	-	-	Stationnary
Type II	9	+	=	=	Stationnary
Type III	9	-	++	+	Portable
Type IV	9	-	++	++	Portable
Type V	7	++	++	+++	Portable

- Additive manufacturing: for the repairability of stainless steel systems which are weakened at high pressures
- > Robustness of safety systems: R&D for a design at the same level as for current internal combustion engine vehicles
- > **Liquid and solid storage**: R&D to develop Portable liquid storage (mature technology but promising storage density but energy-intensive liquefaction & evaporation) and LOHC storage applications

Stationnary Tanks

Typology of existing actors

1. Typology of actors

- > The 3 main types of player in this segment are **multinationals whose core business is hydrogen**, **manufacturers of industrial gas tanks** (Kawasaki, Arkema, Mincatec) who are diversifying into H₂, and **players with technological specialization** (underground storage Linde, solid storage Mincatec, etc.).
- > The best positioned players in this sector are those with a strong presence in the hydrogen station segment (the main application for these tanks).

2. Positioning in the H₂ value chain

In the manufacturing chain, they mainly develop solutions for stationary storage in hydrogen stations, with a minority of solutions for industrial applications. Some of them also manufacture tanks (Chart, Fives Nordon, GKN Hydrogen).

3. Typical partnerships

- > Most large manufacturers are developing **strategic partnerships with sub-component manufacturers** (Chart, Tissot Industrie, etc.).
- > Partnerships are being forged to **provide turnkey hydrogen fuelling infrastructure solutions** (Fluitron and Ara Partners, Charbone and Resato Hydrogen Technology, Matrix Service and Chart...etc).

Major manufacturing projects*

Air Products
United States, China,
India

China
200 stations
deployed

deployed

800 tanks produced 250 stations deployed

*The most widespread application for stationary tanks and the one that will experience the greatest growth is the use of these equipments for storage in H_2 stations. The capacity of the major players was then analyzed from this angle.

Positioning and Quebec Vision | Stationnary Tanks

Key players in stationary tanks stand out for their ability to provide turnkey solutions for refueling applications; this broad spectrum of services gives them a significant competitive advantage over other manufacturers. In Quebec, although demand for stationary tanks is growing, few players have been identified as capable of installing significant manufacturing capacities.

Observations on the stationnary tanks segment

Analysis of key players

Chart Industries

5 200 employees Largest industrial capacity (High liquid storage capacity)

() Air Products

19 275 employees 98 manufacturing sites Grows with partnerships (Cummins)

Linde

74 207 employees 73 manufacturing sites Develops with partnerships (Hyosung Corporation)

Observations

Ścaling manufacturers integrate other complementary equipment segments into the value chain

Flow controllers

PRODUCTS 1

Purification systems H₂ Stations

Electrolyzers H₂ stations

Trends in the segment

Main application – Majority of players are developing solutions for storage in hydrogen stations

R&D – Very important R&D technologically No-finished product, hence the development of specialist SMEs and work on solid or underground storage

_K_Issues Identified

1. Robustness of security systems	
2. Component supply issues	0000
3. Tailor-made dynamics for integration into applications	0000
4. Difficulty in anticipating demand to calibrate capacities	0000

Focus on Quebec's manufacturing capabilities

From a manufacturing point of view, 6 analyzed players are present in QC but the majority operate outside QC.

The interviews conducted highlighted the importance of securing the local supply chain at the stationary reservoir level to meet growing storage needs.

Producing tanks serves the decarbonization of transport

Quebec's Strategic Interest

Provincial decarbonization targets

The manufacture of stationary tanks at QC would allow the consolidation of the supply chain (tanks present throughout the value chain) for future projects (TES, Greenfield Global and stations which will be deployed (Hydrolux)

Although R&D is dynamic, few manufacturing players are present

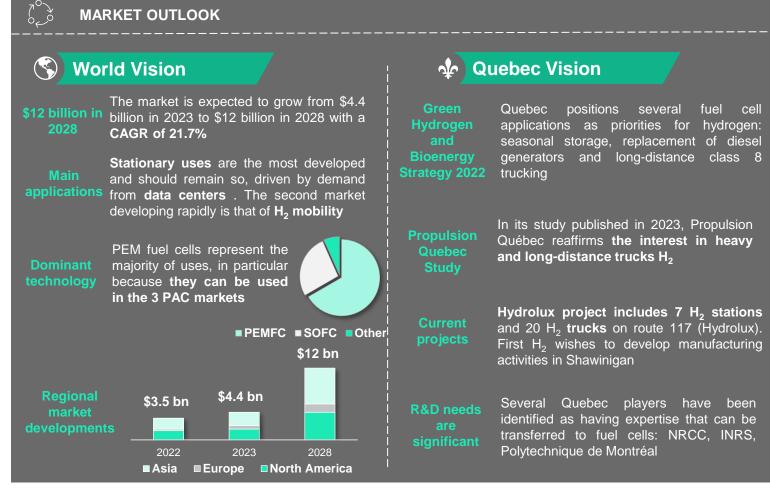
R&D expertise Quebec's Capacity

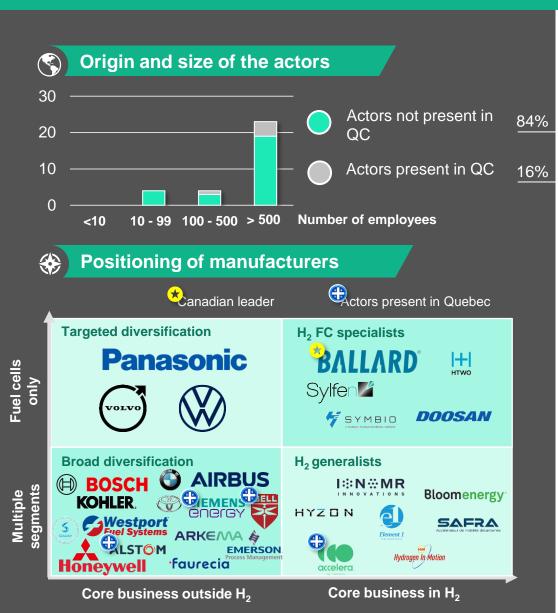
> R&D is key in this market segment where there is still plenty of room for technological innovation. In QC, several players stand out in tank safety systems: a major technological challenge (AS Devices)

Manufacturer

> Some actors present but with production chains outside QC (Europe and United States)

Ecosystem Analysis | Global Portrait of Fuel Cells


Ö


Fuel cells combine H2 and O2 to produce electricity, water and heat. Fuel cells can be built to meet a variety of specifications or energy needs, from a few watts to several megawatts of power. There are three main markets for fuel cell technology: stationary use (backup generators for data centers, hospitals, winter peak management, etc.), transportation (light and heavy vehicles) and portable applications, which concern all portable uses (electricity supply in remote areas, sales to individuals, etc.).

SCM Inox (Nickel) Platinum Cobalt Graphite Cell Terminal plate Electrode Membrane Bipolar plate

Techno.	TRL	Advantages	Difficulties	
PEMFC	9	Low temp. Quick response	Expensive catalyst Sensitive to CO	
AFC	Mature	Few SCM	Sensitive to CO ₂	
PAFC	Average	Average Impurity tolerance Slow response		
MCFC	Low	High efficiency	Corrosion future	
SOFC	9	Electricity/heat complementarity	Slow response Corrosion components	

- > **Efficiency**: improving the efficiency of PACs (currently around 60% for PEMFCs and SOFCs, and 40% for PAFCs)
- > **SCM**: finding alternative catalysts to Platinum
- > **Materials**: developing an alternative to PFAS (currently under discussion to be banned in Europe, closely watched in the US and Canada)
- > Modeling: Total Cost of Ownership Simulation

Fuel Cells

Typology of existing actors

1. Typology of actors

- > The majority of players are **multinationals** (75% have over 500 employees), largely from the **mobility sector**, which are diversifying to develop low-carbon solutions (Volvo, Toyota, Volkswagen, etc.).
- > FC specialists are **SMEs developing around a specific technology** (e.g. Sylfen, reversible SOEC technology) or **key players who have managed to expand without being bought out** (Ballard, Doosan).
- > In the hydrogen-powered truck sector, this high value-added technology is assembled by a handful of global players (Accelera, Toyota, Hyundai, etc.).

2. Positioning in the H₂ value chain

- Players diversifying into the hydrogen value chain are mostly involved in electrolyzer production (Bloom Energy, Bosch, Mitsubishi, etc.) or the development of more complete mobility solutions (Toyota, Hyundai, etc.).
- > Some players specialize in **fuel cell sub-components**, notably the major chemical companies that produce membranes (Solvay, Arkema) or **auxiliary equipment** valves, pressure regulators, seals, etc. (e.g. Wesport Fuel Systems).

3. Typical partnerships

- Players are developing their FC production capabilities mainly through takeovers of specialist companies: Bell Flight - Response Technologies LLC, Cummins - Hydrogenics, Alstom - Helion Power).
- > **FC** specialists are also teaming up with mobility players to develop more comprehensive solutions (e.g. Symbio Stellantis; Safra Mercedes).
- Some mobility players are joining forces to develop this segment (e.g. Volvo Daimler; Faurecia Michelin).

23,000 FC/year HTWO develops PEMFCs **1 GW/year**Develops SOFCs up to 10MW

Capacity of 1.6 GW/year
Desire to multiply this capacity by 6 (PEMFC) by 2030

Positioning and Quebec Vision | Fuel Cells

Historically a niche market, the fuel cell market is expanding rapidly, driven by demand for mobility and backup power systems, prompting several players to position themselves by acquiring specialized SMEs. In Canada, Ballard is a key player, present in the majority of projects requiring fuel cells in Quebec (First H₂, etc.). This is a segment whose development is largely linked to the objectives set by the DOE, particularly in terms of cost.

Observations on the fuel cells segment

Analysis of key players

HTWO | PEMFC

105 000 employees Develops its FC sector in close collaboration with Kia and Gore (for membranes)

Manufacturers scaling up join forces with mobility players to build complete hydrogen solutions

Bloom Energy | SOFC

2530 employees Offers SOFC emergency systems for hospitals and data centers

Ballard | PEMFC

1300 employees Produces the majority of its subcomponents (including membranes)

Other observations on the segment

SCM - Manufacturers have a detailed knowledge of SCM issues, Bloom has committed to providing a report to give visibility on these topics

Highly dynamic sector - Most of the players in this sector are very recent (Kohler, Airbus, etc.) and production targets are very high

Issues Identified

1. Presence of qualified and trained workforce	0000
2. Difficulty in sourcing critical	0000
3. Lack of H ₂ refueling infrastructure	0000
4. Risk of technological overrun	0000

Focus on Quebec's manufacturing capabilities

Of the 3 analyzed players operating in QC, Noe has a manufacturing chain present in Quebec. In Canada, Ballard is a leader in the development of fuel cells and has expressed an interest in eventually establishing a presence in Quebec should significant demand warrant it. In QC, the mobile use of fuel cells is justified for Class 8 trains or trucks.

Quebec's Strategic Interest

Data centers and trucking drive demand

Objectives of the Quebec H₂ strategy

- > FCs are used in applications prioritized in the hydrogen strategy diesel generator replacement, winter peak management and Class 8 heavy-duty trucking.
- > Buses do not appear to be a priority application.

Quebec's Capacity

In Quebec, the R&D ecosystem is dynamic

R&D expertise

> NRC, INRS, UQTR and École Polytechnique de Montréal are potential R&D players in the fuel cell segment.

Manufacturing

> Few players present in Quebec who could develop manufacturing activities locally

Ecosystem Analysis | Global Portrait of Industrial Equipment

Hydrogen (H2) is used in many industrial processes, such as refineries and the chemical industry. This study focuses on two emerging applications: green steel and synthetic fuels. Synthetic fuels are produced by combining H2 and CO2 and are considered low-emission when the hydrogen is generated using decarbonized electricity. Various types of fuels can be produced through this process, including methanol, methane, ammonia, and more. According to the IEA, these fuels are expected to play a key role in decarbonizing the transport sector. Hydrogen also holds great promise for the decarbonization of iron and steel production. By directly reacting hydrogen with iron ore, iron and water are produced instead of iron and CO2. While this iron reduction process is still in its early stages, when combined with an electric arc furnace, it has the potential to significantly decarbonize steel

production. SCM **GREEN STEEL** SYNTHETIC FUELS Direct Cobalt Electric arc « Reverse Water- « Fischer-Tropsch » | reduction furnace Copper Gas Shift » reactor reactor Inox (Nickel)

Equipment	Purpose	
« Reverse Water-Gas Shift » reactor	Converts CO ₂ into CO, necessary for FT synthesis	(00)
« Fischer-Tropsch» reactor	Synthesizes the molecule of interest with $\mathrm{l'H_2}$ and CO	שוות מוות
Direct reduction reactor	Reduces iron ores in a decarbonized way (-up to 95% CO ₂ emissions)	, ididie)
Electric arc furnace	Transforms iron ore into steel using electricity	

- Production of Green Steel from H2: Reduce production costs (currently 10-50% more expensive than the fossilbased version according to the IEA), ensure furnace safety, address corrosion, and mitigate steel embrittlement caused by hydrogen.
- Production of Synthetic Fuels: Improve the efficiency of H₂/CO₂ conversion reactions, explore new reaction pathways to eliminate conversion steps, develop e-biofuels. and enhance the ability to manage intermittent input flows.

MARKET OUTLOOK **World Vision GREEN STEEL** In its 2020 roadmap (the "SDS" scenario), the IEA mentions that more than 8% of global steel production will come from a system using green H₂ as a reducing agent (12Mt H₂/year) The race is on among steel producers to position themselves quickly on these new technologies with large-scale projects announced in Europe, North America and Japan. SYNTHETIC FUELS In its study published in December 2023, the IEA proposes scenarios for integrating synthetic fuels of up to 10% of aviation,

maritime and road fuels.

According to the announced projects, of the 14Mt of synthetic fuels produced by 2030, more than 90% should be in the form of ammonia, 4% methane, 1% methane and 5% others.

Quebec vision

to deploy green,

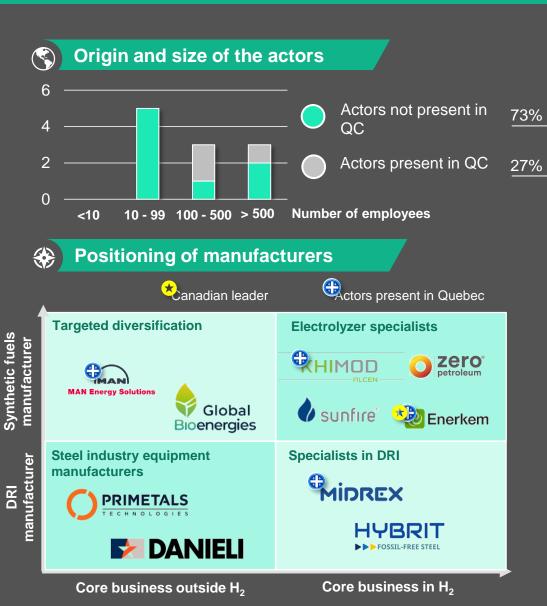
Quebec has identified the use of H2 in industrial processes and synthetic fuels as the two applications to be prioritized

H2Green Steel is currently in discussions with QC to develop a \$3 billion to \$6 billion plant.

Arcelor Mittal has tested up to 7% H₂ in its Contrecœur reactor, but its plants are too old in QC to develop H₂ on a large scale.

Notable projects have been announced in the field of synthetic

Mauricie - TES Canada. 150 toe of synthetic methane for injection into the natural gas network


Montreal - SAF+. 75 Tep of e-kerosene for the aviation industry

Varennes - Enerkem. 105 Tep of emethanol

Baie-Comeau - Hy2Gen. 90 Tep of eammonia, for local use.

Montreal - Greenfield. Production of emethanol for shipping.

erspectiv

Industrial Equipment

Typology of existing actors

1. Typology of actors

- > In the race for green steel, the steel industry's major equipment manufacturers are developing and testing H₂ solutions. Few players have positioned themselves in this segment, due to its high technological complexity and capital intensity. The segment is dominated by Japanese companies (Midrex - 80% of DRI reactors, Primetals).
- > Synthetic fuels companies are mostly VSEs/SMEs (<100 employees) in development.

2. Positioning in the H₂ value chain

- > Players developing solutions for green steel are always specialists, focusing on the industrial equipment segment.
- > Similarly, all the players positioned in synthetic fuels are specialists, with the exception of Sunfire, which also produces electrolysers.

3. Typical partnerships

- Steel industry players are joining forces to develop complete ecosystems (e.g. Primetals -Engie - Forvia); and with major renewable energy players (e.g. H2Green Steel - Primetal -Iberdrola; LKAB - SSAB - Vattenfall) to produce green H₂.
- Synthetic fuels companies are forming consortia with renewable energy and green hydrogen producers, project developers and technology suppliers (electrolysers, etc.) to **complement their expertise** and **share risks** on these initial projects.

Major manufacturing projects

Sutton, Worcester

Midrex **United States**

Quebec

Enerkem

+4 green steel production plants supplied (Russia, US)

+100 DRI modules deployed worldwide (80% of global DRI)

+5 major projects In Spain, Europe, US, Canada

Positioning and Quebec Vision | Industrial Equipment

These two industrial applications are recent and are developing rapidly because the markets are so promising. Industrial ecosystems are being set up to launch the first projects, with technology suppliers at the forefront. For Quebec, the challenges of decarbonization are major, and certain players are well positioned to meet them.

Observations on the industrial equipment segment

Analysis of key players

Primetals

7 000 employees Involved in the majority of largescale green hydrogen production projects (France, Sweden)

Midrex

500 employees Deploys 80% of the world's DRI. Complementarity with parent company Kobe Steel

Enerkem

380 employees Fast-growing and very mature for its segment

Developed partnerships

Manufacturers are growing by building partnerships with the ecosystem to set up the first projects.

Other observations on the segment

Modular solutions - The majority of reactor manufacturers for the production of synthetic fuels are capable of producing a wide variety of different molecules

Maturity - These are two very young segments that are subject to a great deal of publicity, making it difficult to distinguish which projects will actually see the light of day

Issues Identified

1. Fragility of the business model of the decarbonized	0000
2. Positioning: license provider or manufacturer	0000
3. Difficulty in anticipating demand	0000
4. Scaling up the ecosystem	0000

Focus on Quebec's manufacturing capabilities

From the manufacturers' point of view, a number of manufacturers are already operating in Quebec, notably the Midrex processes used at Contrecœur; In addition, Enerkem offers its technological solution for major waste-to-synfuels projects (specifically for methanol).

These are key priority segments for Quebec

Quebec's Strategic Interest

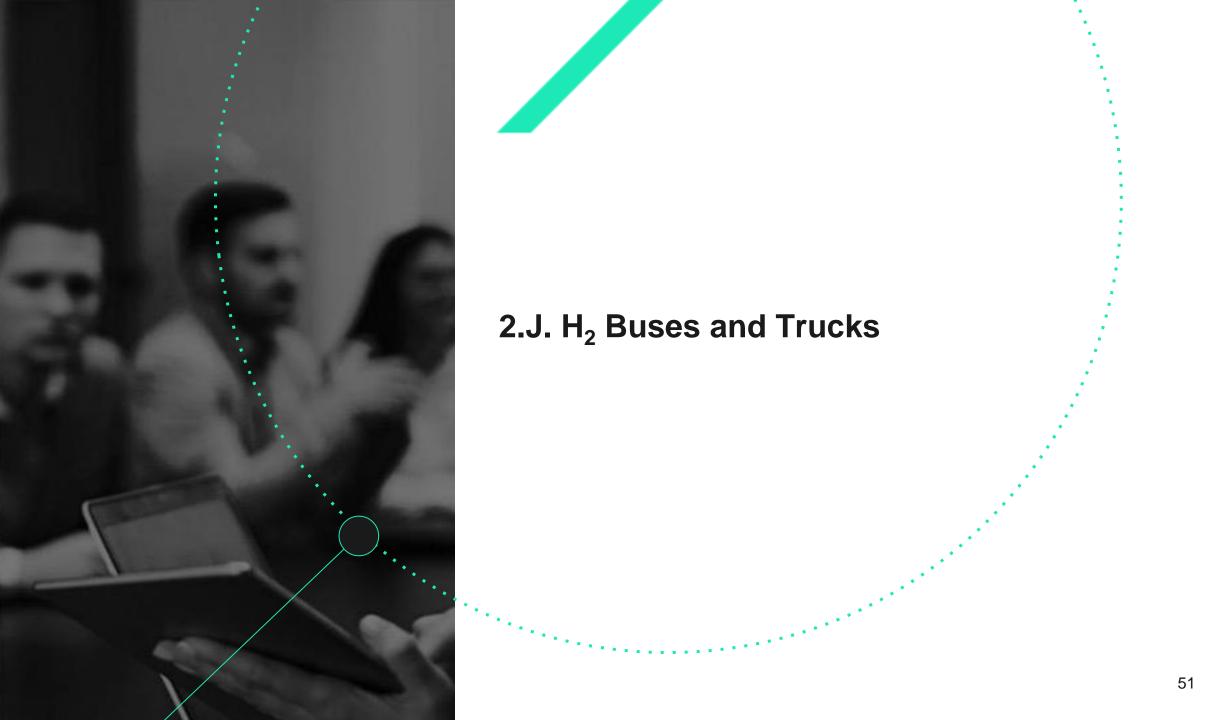
Provincial decarbonization targets

- Green steel is a priority for Quebec the metallurgical industries account for 29% of CO2 emissions subject to the SPEDE.
- In addition, synthetic fuels meet the decarbonization needs of the chemical and transportation industries.

Strong demand could attract industrial actors to Quebec

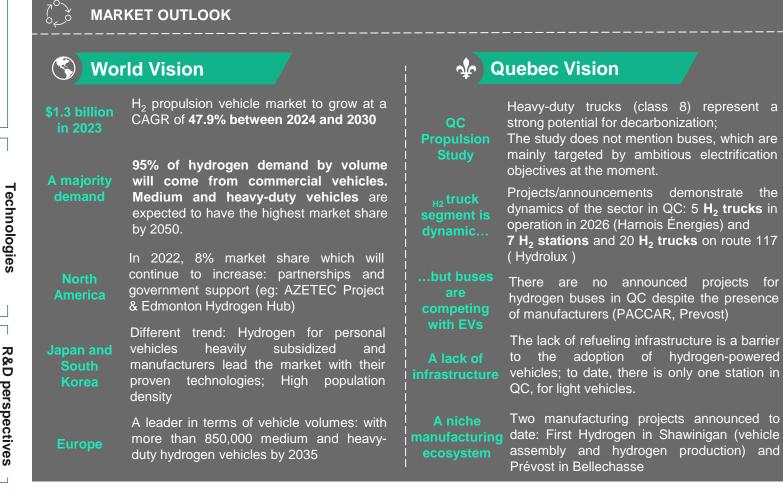
Manufacturing Quebec's Capacity

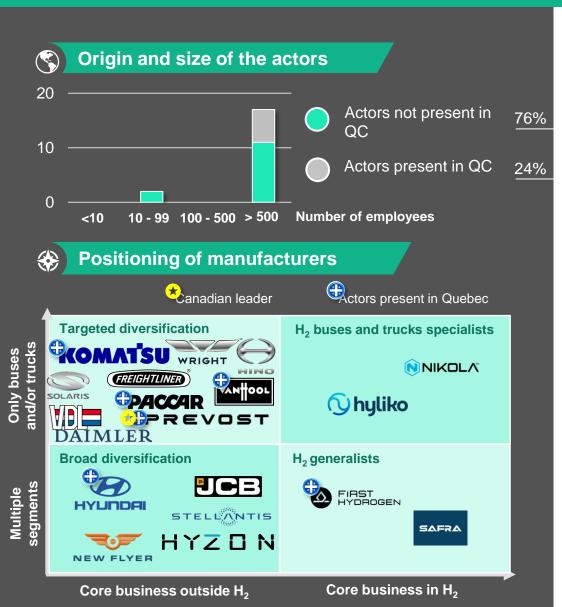
The general enthusiasm for steel and synthetic fuels could justify the establishment of a manufacturer in Quebec, especially since Enerkem is already present.


R&D

Polytechnique Montreal and University of Sherbrooke have expertise in synthetic fuel production processes

Ecosystem Analysis | Global Portrait of H₂ Buses and Trucks


Hydrogen-powered vehicles are typically divided into two categories: personal vehicles and commercial vehicles, including medium- and heavy-duty vehicles. Commercial vehicles are being marketed most extensively due to the longer distances they cover and the lower efficiency of conventional vehicles. This segment encompasses several key technologies, such as fuel cells, hydrogen combustion engines, and hydrogen refueling or injection solutions. Closed-loop systems are particularly noteworthy. This analysis focuses on heavy-duty transport, which is gaining significant momentum in Quebec, particularly for hydrogen-powered trucks and buses. The Quebec government recently announced the conclusion of its pilot project for light-duty hydrogen vehicles, with no further investments planned for this type of vehicle.


SCM Copper Lithium-ion battery Frame **Titanium** Hydrogen combustion engine Inox (Nickel) **Platinum** Portable tank Fuel cell Cobalt Graphite

Туре	TRL	Need for fast charging	Autonomy needs	Relevance vs EVs	(Cu
Light vehicles	9	+	+	-	echnolourrent an
Buses	9	+++	++	++	ologies nd future)
Trucks	9	+++	+++	+++	re)

- Component stress analysis: R&D to optimize transfer of liquid or gaseous hydrogen at high flow rates
- **Liquid storage**: R&D to develop portable liquid storage: promising storage density but energy-intensive liquefaction & evaporation

perspectives

H₂ Buses and Trucks

Typology of existing actors

1. Typology of actors

- Most of the players are multinationals specializing in the manufacture of buses and trucks whose core business is not hydrogen. They are expanding their technology portfolio to offer hydrogen-powered buses and trucks
- > There is a **significant disparity in terms of order backlogs of the players**: from 1 to 100 trucks. Some projects are at a demonstration scale (VDL Groep, Daimler) while others are at a more advanced stage: in marketing (New Flyer)

2. Positioning in the H₂ value chain

- > The majority of players are manufacturers of conventional buses and trucks, few specialists in H₂ buses/trucks have been identified
- On the manufacturing chain, they are mainly assemblers. Some of them integrate the manufacture of fuel cells (Hyundai - HTWO), tanks (New Flyer) or combustion engines (JCB Bamford)
- > Hydra Energy has been identified as a specialist in hydrogen rehabilitation and injection technologies

3. Typical partnerships

- > The majority of large manufacturers are developing strategic partnerships with players specializing in fuel cells or related systems to secure supply chains (Symbio, Faurecia, Ballard)
- Another type of partnership is observed between bus and truck manufacturers and hydrogen suppliers for refueling vehicles (e.g. PACCAR and Toyota)

Major order backlogs

108 buses

ordered by

SamTrans

50 trucks

ordered by

BayoTech

1000 buses deployed in Switzerland

318 conventional buses for the New York MTA assembled in Bellechasse

Positioning and Quebec Vision | H₂ Buses and Trucks

The key players in this segment stand out for their ability to form partnerships to secure supply chains for key bus and truck components (fuel cells, tanks, combustion engines). In Quebec, although H₂ heavy mobility is showing interesting momentum and some players have been identified as capable of producing this equipment on a large scale, demand remains low.

Observations on the H₂ buses and trucks segment

Analysis of key players

278 735 employees Largest industrial capacity (1000 trucks deployed to date) Produces fuel cells

New Fiver

8000 employees 5 manufacturing sites (Order of 108 trucks) Produces the tanks

Nikola

1 500 employees 1 manufacturing site (Order for 50 trucks) Developed through partnership

Developed partnerships

Manufacturers who are scaling up work in tandem with suppliers of ancillary equipment or produce it themselves. Others, like Nikola, partner with station manufacturers to provide turnkey solutions for their customers.

Other observations on the segment

Complementarity with EVs - In the government's objectives for decarbonizing transport, ambitious quantified targets are presented for EVs. Hydrogen's decarbonization potential is recognized, but clear objectives have yet to be defined.

_K_Issues Identified

1. Business model under construction	0000
2 Lack of refueling infrastructure	0000
3. Performance and wear of ancillary equipment	0000
4. Ability of ecosystem players to scale	0000

Focus on Quebec's manufacturing capabilities

From a manufacturing standpoint, there are 3 established players operating in QC: First Hydrogen in Shawinigan, PACCAR in Sainte-Thérèse and possibly Prevost in Bellechasse (with ambitions to move into hydrogen), even if their growth dynamics are driven by projects outside QC (Los Angeles, London, New York). The interviews conducted identified First Hydrogen as being interested in developing manufacturing activities in Quebec.

Producing trucks and buses serves the decarbonization of transport

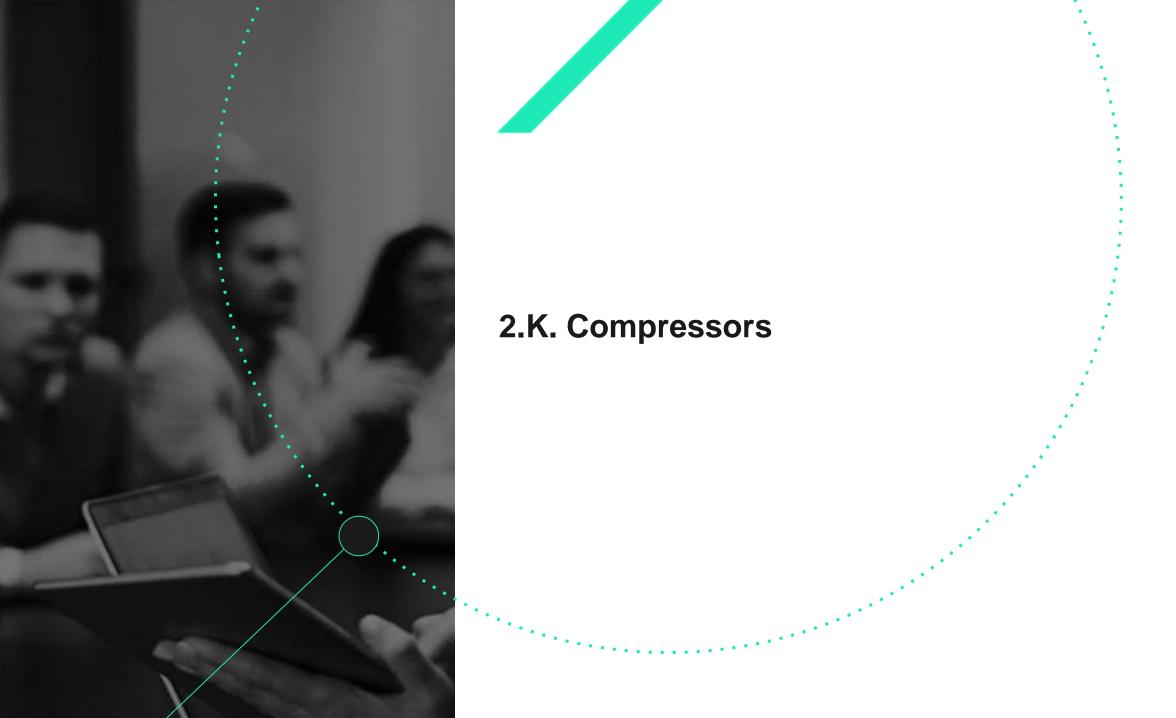
Quebec's Strategic Interest

Provincial decarbonization targets

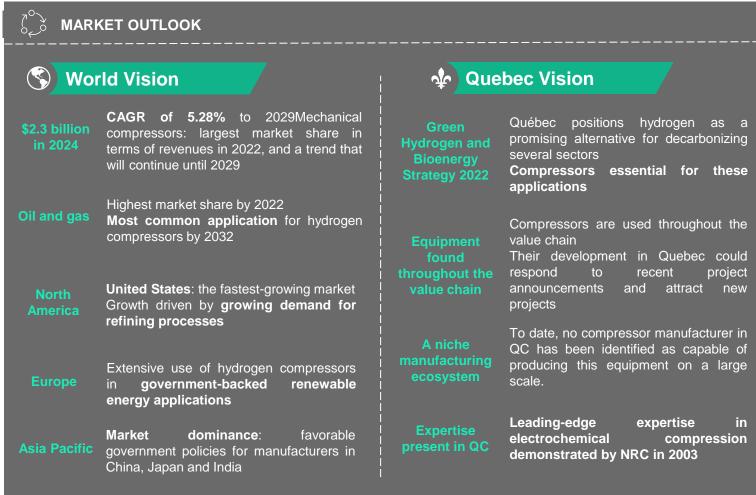
- The Quebec government aims to reduce its GHG emissions by 37.5% by 2030 and transportation accounts for 44% of these emissions
- Furthermore, the provincial strategy for green H₂ identifies heavy transport as a **medium priority outlet** for H₂

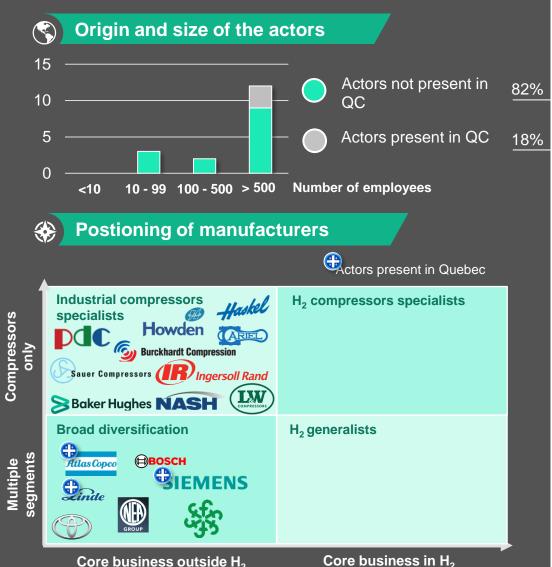
Quebec's Capacity

An emerging dynami


- H₂ buses and/or trucks? Projects and feasibility studies focus on the truck segment for H₂ applications; No H₂ bus projects have been announced in QC; dynamics to follow (Prevost presence)
- Manufacturing: Several players capable of producing H2 buses and trucks and emerging momentum, but Class 8s are not currently favored (e.g. First Hydrogen - future assembly plant in Shawinigan).

Ecosystem Analysis | Global Portrait of Compressors


R&D perspectives


Hydrogen compression technologies can be divided into two categories: mechanical and No-mechanical. The mechanical category includes reciprocating, diaphragm, ionic, and liquid compressors. The No-mechanical category includes cryogenic, metal hydride, electrochemical, and adsorption compressors. Today, mechanical compressors are the most widely used. The compressor segment is undergoing significant evolution, as compression remains the most common method for storing and delivering hydrogen, followed by truck delivery, particularly for small stations and low-demand applications. As a result, ongoing efforts are focused on improving compression technologies. Additionally, compressors are required at every stage of the hydrogen value chain.

Titanium Piston Disc Cylinder Pump Inox (Nickel) Wall

Туре	TRL	Efficiency*	Applications		
Alternative Diaphragm Linear Ionic Cryogenic Metal hydride	9 9 9 9 9	45% 45% >70% 70% 25-50% 25%	High pressure Low flow rate Aerospace H ₂ stations Liquid Exothermic	Technologies (Current and future)	1
Electrochemical Adsorption	7 7	60% -	Gaseous Solid	OTU	
				쮸	

- > **Tightness of safety systems:** maintenance of valves and pistons to prevent compressor leaks accounts for around 90% of operating costs
- > Efficiency of metal hydride and electrochemical systems: R&D needed to reduce energy consumption and improve efficiency

H₂ Compressors

Typology of existing actors

1. Typology of actors

- The main players in this segment are manufacturers of industrial compressors whose core business is not hydrogen, and a few multinationals already involved in the hydrogen value chain that are positioning themselves in the compressor segment (Linde, Siemens, Bosch...).
- > No player whose core business is hydrogen has been identified; hydrogen compression is technologically complicated: barrier to entry for generalists.

2. Positioning in the H₂ value chain

- > Most players are hydrogen compressor specialists who do not develop other hydrogen solutions (Baker Hughes, Howden, PDC Machines...).
- > The majority of players are compressor assemblers, with a few players also producing subcomponents (Ariel Corporation and Burckhardt: compression cylinders).

3. Typical partnerships

- > Most manufacturers are developing strategic partnerships with end-users (Howden & Everfuel, Bosch & Maximator Hydrogen, PDC Machines & Hynion).
- > Partnerships are also being forged to develop compressor solutions for specific applications: Mobility for high-capacity, high-pressure stations (Ariel Corporation & Hoerbiger); Liquefaction (Atlas Copco & Plug Power).

Capacity of major identified manufacturers

delivered

USA. Germanv. Sweden

2500 H₂ compressors

Baker Hughes Australia, Asia, Europe, States, Middle

East

2000 H₂ compressors delivered

PDC Machines

delivered

Howden Europe, Americas, Oceania

Australia, Europe, Asia, USA, Netherlands, UK, Czech Republic

2000 H₂ and other 1500 H₂ and other gas gas compressors compressors delivered

Core business in H₂

Positioning and Quebec Vision | H₂ Compressors

The key players in this segment distinguish themselves through their highly specialized technological expertise. This is a critical sector characterized by a technologically complex manufacturing process. In Quebec, while the sector is evolving and compressor applications are increasing, only a few players have been identified as capable of establishing substantial manufacturing capacities.

Observations on the compressor segment

Analysis of key players

92 000 employees Largest industrial capacity 2 well-referenced product lines (alternatives and turbocompressors)

Baker Hughes

55 000 employees 10 manufacturing sites Develops with partnerships (Air Products and Terna)

PDC Machines

1 350 employees 3 manufacturing sites Hydrogen compression expertise since 1992

Developed partnerships

Manufacturers who scale up work hand in hand with end users.

22 alternative compressors supplied

Other observations on the segment Sector not very mature - Compressor: Risky critical equipment; Several players are still in the testing phase, creating obstacles in other links in the chain

Choice Technology Manufacturers take a high risk by specializing in a specific compression technology

K Issues Identified

	Business model to be consolidated	0000
2. Durability of components (valves and piston)		
	3. Choosing a compression technology to produce on a large scale	0000
	4. Ability of ecosystem players to scale	0000

Focus on Quebec's manufacturing capabilities

From a manufacturing point of view, only 3 analyzed players are present in QC: Siemens, Linde and Atlas Copco with activities mainly outside QC.

This segment is not specific to hydrogen and is involved in applications for other gases as well.

A critical equipment in the value chain

Quebec's Strategic Interest

Provincial decarbonization targets

- The hydrogen sector is experiencing dynamic development with several projects on the horizon
- Compressors are essential to several applications across the entire value chain from production to use.

Although R&D is dynamic, few manufacturing players are present

Electrochemical compression Quebec's Capacity

> In QC, the NRC stands out in the demonstration of electrochemical compression technologies; collaborations with manufacturers would allow the move to the commercialization stage

Manufacturer


> Few/no QC players identified capable of producing compressors on a large scale

Ecosystem Analysis | Global Portrait of Fittings and Valves

The valves and fittings segment includes various types of equipment: valves, fittings, gaskets, taps, connectors, dampers, flanges, accessories, and more. While this equipment is typically used in conventional industrial processes, it must be adapted for hydrogen applications due to hydrogen's high volatility and reactivity with materials, requiring improved sealing capabilities. These components are critical at most stages of the value chain to ensure the safety and quality of operations. The major challenges for this equipment include using materials resistant to the corrosive effects of hydrogen and minimizing hydrogen leaks. Currently, there is no global framework for certifying such equipment for hydrogen applications.

Quebec Vision

working

standards.

value chain

Valves

Equipment present The development of this segment in

Regulations to be

R&D expertise

The development of a QC standard to

enable large-scale manufacturing.

The BNQ and the CSA are currently

Valves are used throughout the entire

Quebec could meet the needs created

by the new projects announced and

Hydrogen valve expertise held by

Velan, Swagelok, KSB and JC

Expertise in additive manufacturing

(CQFA) and several studies on

corrosion by embrittlement of valves

(eg: IBECA, McGill & CMQ),

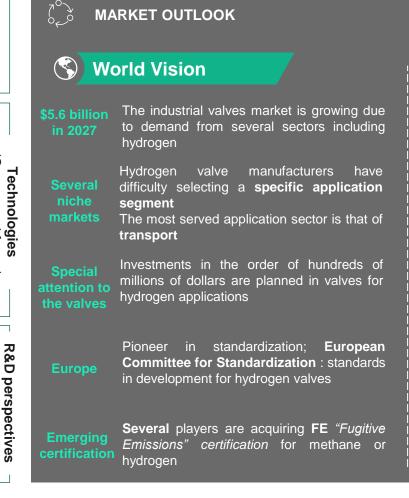
solidify the Quebec supply chain.

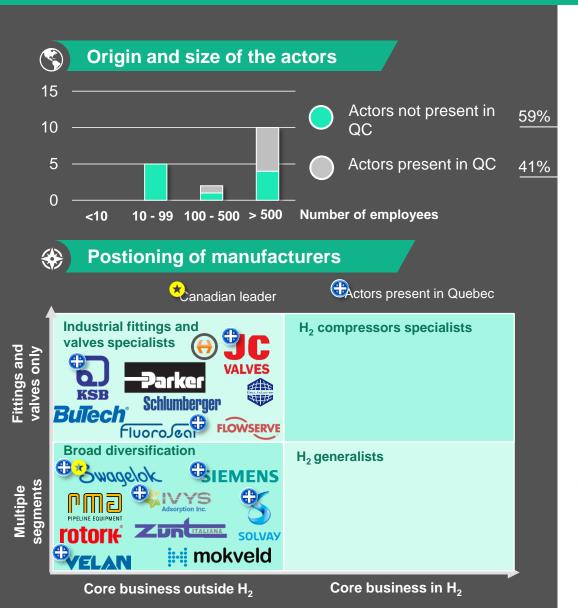
on

developing

SCM

Inox (Nickel) Titanium





Equipment	Use	
Valves	Control the hydrogen flow	
Connectors	Connect the pipes	ent a
Taps	Cut off the hydrogen flow	olog and f
Fittings	Ensure waterproofing	ies uture,
Dampers	Preventing the passage of hydrogen in a conduit	

- Additive Manufacturing: Repairability of stainless steel systems weakened at high pressures due to corrosion and control of leaks and fugitive emissions
- Robustness of security systems: R&D for a design with the same level of security as for other industrial applications
- Resistance to pressure cycles: Development to improve resistance to pressure cycles, particularly for pipeline applications

Fittings and Valves

Typology of existing actors

1. Typology of actors

The majority of players in this segment are diversifying manufacturers whose core business is not hydrogen. Their manufacturing capacities for hydrogen-specific fittings and valves are therefore closely linked to their manufacturing capacities for other gases

2. Positioning in the H₂ value chain

- > The majority of players are hydrogen valve specialists who do not develop other hydrogen solutions (KSB, SLB, JC Valves, Mokveld Valves...)
- > When valve manufacturers diversify, they find themselves in the instrumentation segment of the hydrogen value chain (actuators, actuators, etc.)
- > The majority of hydrogen valve manufacturers focus on valves (77%), which are in high demand in this segment thanks to the development of several applications where they are indispensable (e.g. stationary or Portable storage)
- Several players provide operation and maintenance services for valves (KSB, SLB, Parker, etc.)
- > Solvay has been identified as a specialist in polymers for valves

3. Typical partnerships

- > Most manufacturers are developing strategic partnerships with end-users (Rotork Motorisation & H2Gen; Swagelok & Everfuel).
- Partnerships are also being forged to develop new hydrogen technologies (SLB in partnership with CEA have developed Genvia for the design of a SOEC electrolyzer).

Norway, USA. Japan, Canada, UK, China

Valves and fittings; 20 manufacturing sites;

Flowserve + 50 countries Fittings; 206

Quebec Valves: 9

Ivys (Xebec)

manufacturing manufacturing sites; and service sites Valves; Operation in 5 technology centers 17 service centers 120 countries

Positioning and Quebec Vision | Fittings and Valves

Scale-up in this segment is hampered by the absence of standardization, which creates a bespoke market dynamic. This segment is easy for players in the hydrogen chain to outsource, thanks to existing capacities that meet their needs. Quebec is in a position to meet manufacturers' current needs but is limited by relatively low demand compared with the United States, which boasts the highest manufacturing capacity.

Observations on the fittings and valves segment

Analysis of key players

Schlumberger | Valves

99 000 employees Develops by creating partnerships to consolidate its H2 expertise

5 500 employees Strong presence in QC H₂ compatible FK fittings

Fittings

Flowserve | Joints

16 000 employees Expands through acquisitions to broaden its product portfolio and manufacturing capabilities

Developed partnerships

Manufacturers often grow through large-scale projects

Hydrogen production project by SOEC technology

Swagelok

Supply of fittings HySynergy Project

GENVIA

Other observations on the segment Acquisitions - Players are also expanding

Certifications – Although the regulatory framework remains unclear at the level of this segment, the players are acquiring certifications as a competitive advantage

K Issues Identified

through acquisitions to broaden their H2 valve product portfolio and increase their manufacturing capabilities (e.g. Flowserve acquires Velan; acquisition stopped by the French government: critical valves for the nuclear sector)

1. Durability of components	0000
2. Difficulty in anticipating demand to calibrate capacities	0000
3. Difficulty in selecting a particular segment	0000
4. Custom manufacturing and lack of standards	0000

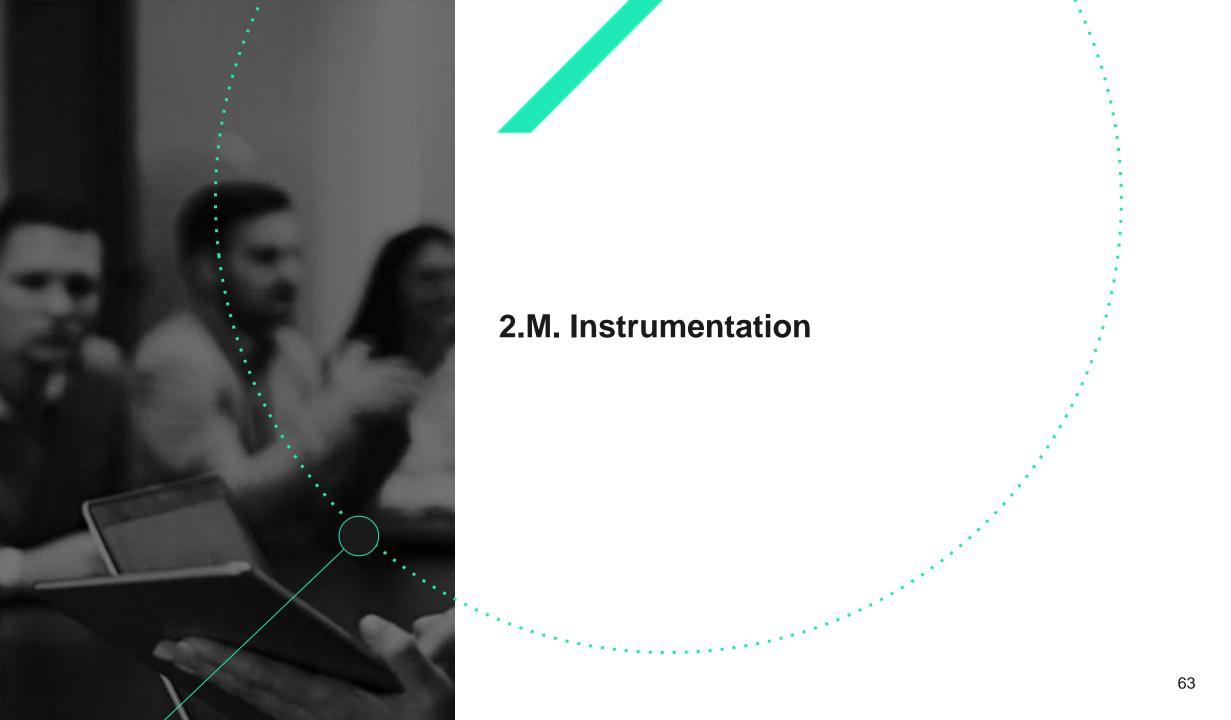
Focus on Quebec manufacturing capabilities

From a manufacturing point of view, several manufacturers operate in Quebec: Swagelok, Siemens, Solvay, Velan and Ivys. It is not clear whether their manufacturing activities are concentrated in QC. Fluroseal has manufacturing facilities in Montreal. Interviews with manufacturers show the importance of developing a strong Quebec supply chain for secondary and auxiliary equipment (including valves).

Meeting needs and attracting manufacturers

Quebec's Strategic Interest

- The development of a manufacturing ecosystem for hydrogen valves would make it possible to meet the needs created by the announced projects (TES, Greenfield Global, Hydrolux, etc.)
- Furthermore, the presence of this supply chain in QC could attract new manufacturing players seeking good proximity with component suppliers.


Quebec's Capacity

A dynamic manufacturing ecosystem

Industrial and technological expertise

- > In QC, additive manufacturing can address the challenge of corrosion of valve components
- Several players in QC identified capable of producing valve equipment (JC Valves, Swagelok, Siemens, etc.)
- Alliances between researchers and industrialists would help to further develop the manufacturing ecosystem

Ecosystem Analysis | Global Portrait of Hydrogen Instrumentation

standards.

To detect hydrogen leaks, automate production processes, or ensure gas purity, instrumentation systems are essential for the safe development of the H₂ sector. These systems are used to improve the efficiency of production plants, reduce operating costs, extend plant lifespans, and guarantee the quality of finished products. Due to hydrogen's flammability, high diffusion power, and its odorless and invisible flame, industrial processes involving H₂ require heightened vigilance in terms of safety. As such, they rely on reliable and robust equipment specifically adapted to the unique characteristics of hydrogen.

SCM

Platinum Palladium Graphene Tungsten

Sensor

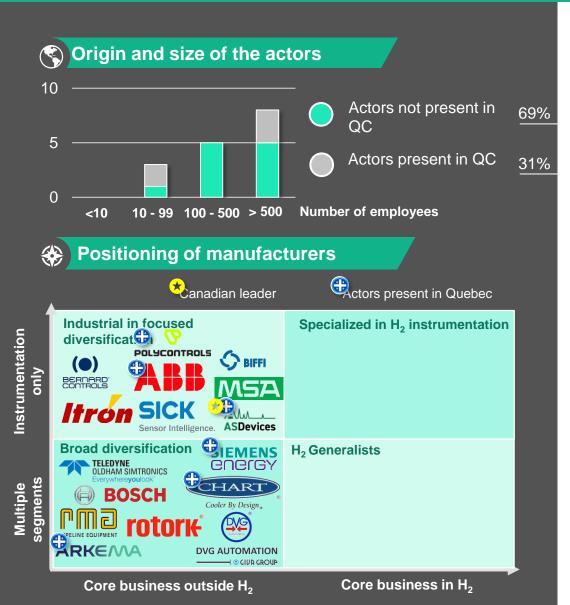
Controler

Analyzer

Technologies

R&D perspectives

Equipements	Uses	Sample of techno.	_
Sensor	Detect leaks, excessive pressure or temperature	Optical sensor Electrochemical sensor	Current
Controler	Open/close a remote valve or tap. Flow control	Air pilot valve (with H ₂₋ compatible steel)	and lutur
Analyzer	Check for quality and impurities	Plasma analyzer Gas chromatography	(e)


- Sensor: reduce cost and size, improve accuracy and reliability, minimum limit of H₂ concentration detectable
- Controler: ability to optimize and fully automate processes
- Analyszer: develop solutions capable of analyzing composition in real time

MARKET OUTLOOK **World Vision Quebec Vision** The market for gas instrumentation (not The development of a QC standard \$8,2 Mds in justH2) is expected to grow from \$6.3 Regulations to be would help the deployment of largebillion in 2023 to \$12 billion in 2028, at a scale solutions. BNQ and CSA are CAGR of 5.6%. currently development of such standards. The development of more effective safety Key growth systems and growing awareness of the environmental impact of gas leaks (the Instrumentation equipment is used global warming potential of methane and throughout the entire value chain H₂ is very high) are driving this sector Equipment prese The development of this segment in throughout the forward. Quebec could meet the needs created by the new projects announced and The development of 100% H₂ pipelines, strengthen the Quebec supply chain. and the use/production of H₂ in confined environments (cars, factories, etc.) makes points to detection all the more important to avoid Industrial instrumentation expertise industrial incidents that could slow down held by Polycontrols, AS Devices and the sector. ABB in Quebec Growth will be strongest in Asia, driven by Asia: the Expertise in H₂ leak detection at ain potential the industrialization of these countries and Polytechnique Montréal, and in sensors **R&D** Expertise the introduction of international safety at École de Technologie Supérieure and

working

Université de Laval

the

Instrumentation

Typology of existing actors

1. Typology of actors

The types of players found mainly in this segment are diversifying manufacturers whose core business is not hydrogen; these players' manufacturing capacities for hydrogen-specific instrumentation are therefore closely linked to their manufacturing capacities for other applications.

2. Positioning in the H₂ value chain

- > The majority of players are **hydrogen instrumentation specialists** who do not develop other solutions (Itron, MSA, AS Devices, Bernard Controls...).
- > The instrumentation players who diversify are positioned in **valves** (RMA, Rotork Motorisation...) or **other segments of the value chain requiring high quality and safety control** (Hydrogen production: Siemens Energy; Hydrogen transport: Chart).
- > The majority of players are **assemblers of instrumentation solutions** (e.g. AS Devices only assembles instrumentation equipment).

3. Typical partnerships

- Most manufacturers are developing strategic partnerships with green hydrogen producers, notably for the automation of their H₂ generation processes (Rotork Motorisation & H2Gen; ABB & Hydrogen Optimized)
- > Partnerships are also being forged to **develop turnkey solutions** to meet the quality control and safety needs of hydrogen processes (Sick & Endress+Hauer).

Major manufacturing capabilities

491 manufacturing and service sites

Presence in +190 countries

More than 1,000 flow measurement systems produced per years

Positioning and Quebec Vision | Instrumentation

The instrumentation market is driven by growing demand for hydrogen process quality and safety. Despite the lack of standards, players are making their mark by building solid business models and ensuring proximity to end-users. In QC, several players are present, but demand remains weak and is highly dependent on the speed of development of the hydrogen sector.

Observations on the instrumentation segment

Analysis of key players

105 000 employees

Developing partnerships for largescale green hydrogen projects

Offers webinars and studies to share expertise on hydrogen process automation

5 200 employees

Expands by internalizing the manufacture of instrumentation for its hydrogen liquefaction processes

Developed partnerships

Manufacturers who scaling up are those who are partnering on large-scale green hydrogen projects.

Other observations on the segment

Tendency to specialize- The technological specificity of this segment means that players have little tendency to position themselves in other segments of the manufacturing chain.

Priority applications - A trend observed in the prioritization of hydrogen distribution and production applications for instrumentation, which are currently driving demand.

... Issues Identified

1. Difficulty anticipating demand to calibrate capacity	0000
2. Lack of standards and custom manufacturing	0000
3. Project race between key players	0000
4. Quality control mentality to change	. 0000

Focus on Quebec manufacturing capabilities

Of the 5 benchmarked players operating in QC, 3 have a local manufacturing chain (Arkema, Polycontrols and Siemens). This segment is often outsourced by manufacturers in the sector. AS Devices has made a name for itself in supporting the growth of hydrogen stations by offering mobile hydrogen purity analyzers for refueling stations.

Quebec's Strategic Interest

Demand still too weak to justify the development of a manufacturing ecosystem

Manufacturers need good visibility of demand to justify setting up a manufacturing plant.

- Demand remains low in QC, and key players are able to meet local instrumentation needs from their manufacturing facilities outside QC.
- Interest would be justified with greater demand starting to develop as new projects are announced.

Quebec's Capacity

Quebec's ability to meet manufacturers' criteria

1. Need for very strong local demand 2. Presence of existing infrastructures/spaces 3. Subcontractors present

Weak

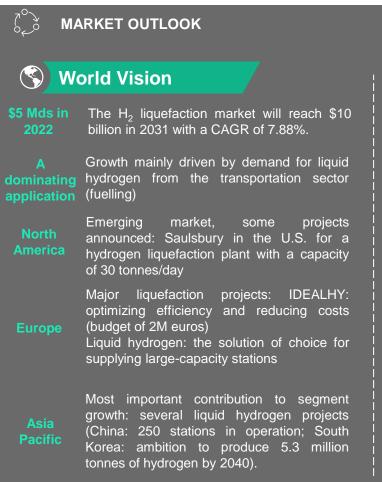
4. Skilled workforce

Average

Weak

Strong

Ecosystem Analysis | Global Portrait of Hydrogen Liquefiers


R&D perspectives

Liquefiers are devices used to compress and cool hydrogen until it condenses into a liquid state. They are part of the equipment involved in the liquefaction process, alongside piston compressors, hydrogen conditioning and purification units, expansion turbines, and storage tanks. Hydrogen in its liquid state offers the advantage of being more compact and easier to handle, with the ability to be stored without pressurization prior to transport or use. These factors are driving manufacturers to develop liquid hydrogen technologies, including liquefiers for applications in hydrogen-powered vehicles, hydrogen stations, and the aerospace industry. However, the evaporation of liquid H₂ poses safety challenges, and solutions involving the use of liquid hydrogen are currently being refined to improve cost-effectiveness.

SCM Expansion turbine Cold Box Inox (Nickel) **Titanium** Heat exchanger Liquefier

Process	TRL	Barriers and needs	
Linde-Hampson	9	Low efficiency Only compatible with small-capacity systems Process modification by adding heat exchangers	
Claude		Process modification by adding heat exchangers	
Brayton 8 Adaptation for higher capacities		gies future	
Magnetic 7		Energy-intensive process and performance to be optimized	

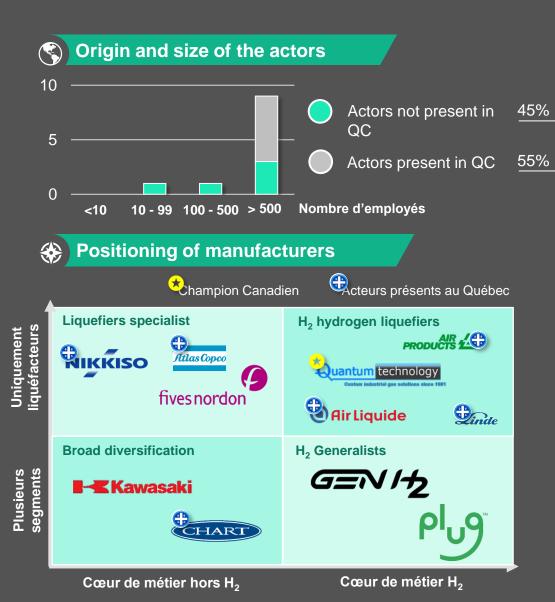
- Auxiliary equipment: Development needed to improve the tightness of auxiliary equipment such as cryogenic pumps and compressors (high losses, leaks and evaporation)
- Efficiency of liquefaction process: R&D to achieve at least 60% efficiency in the refrigeration cycle
- Energy intensive process: 10 kWh/kg of hydrogen while DOE target is at 6 kWh/kg

Quebec Vision

and Bioenergy Strategy 2030

Québec positions hydrogen as a promising alternative for decarbonizing the heavy and long-distance mobility sector

Growing demand for liquid H₂


Several projects are already using industrial-scale liquefaction in Quebec (e.g. Olin/Arkema/ Air Liquide in Bécancour), and demand is set to continue growing.

A bottleneck caused by R&D

Applications being considered or commercialized at QC are held back by R&D requirements for liquefaction technologies (liquid storage, heavv transport of hydrogen).

Co-

A segment that could grow, provided it develops at the same time as liquid H₂ transport and storage.

Hydrogen Liquefiers

Typology of existing actors

1. Typology of actors

- > The majority of players are multinationals **specializing in industrial liquefiers** (for H₂ and other gases).
- > Most manufacturers **provide solutions based on a modification of Claude's** process that justifies the marketing of their liquefiers (improved efficiency conferred by adding an exchanger to the liquefaction device).
- > Players stand out for their expertise in liquefaction technologies and liquefaction and cryogenics process operations (Linde, Air Liquide).

2. Positioning in the H₂ value chain

- The majority of players are hydrogen liquefier specialists who are also positioned in complementary segments of the liquid hydrogen value chain (e.g. Plug Power is positioned in generation, liquefaction and distribution).
- > The majority of players internalize the manufacture of auxiliary equipment for liquefiers: the manufacturing challenges in terms of volatility and fragility are similar (e.g. Fives Nordon: manufacture of heat exchangers; Linde: manufacture of expansion turbines and others; Atlas Copco: manufacture of compressors)

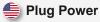
3. Typical partnerships

- > Involvement in development programs for **specific liquid hydrogen applications** (e.g. Fives Nordon & HyCryo; Plug Power, Chart & Fives Nordon).
- Partnerships are also being forged with end-users to develop low-carbon solutions (e.g. Plug Power supplies hydrogen to Nikola to fuel its trucks; Linde supplies hydrogen to Dow for its zero-emission project in Saskatchewan).

Positioning and Quebec Vision | Hydrogen Liquefiers

Despite the presence of several manufacturers capable of producing liquefiers on a large scale, and the growing demand forliquid H₂ solutions, the development of this segment is limited by that of liquid transport and storage, where R&D needs remain high. The players positioning themselves in this segment have historically had expertise in liquefaction, which represents a major barrier to entry. Quebec is in a position to meet the R&D needs of this segment, but manufacturing expertise remains less developed than in the rest of Canada.

Observations on the fittings and valves segment


74 207 employees Strong expertise in liquefaction Extensive portfolio of liquefiers (exchangers, turbines)

The best-positioned players in this segment are involved in large-scale liquefaction projects to demonstrate the efficiency of their equipment.

67 100 employees Low-maintenance, high-efficiency liauefiers Largest liquefaction plant

3 353 employees Complete solutions for liquid hydrogen (generation, liquefaction and distribution)

Leuna liquefaction plant Capacity of 10 tonnes per day

Air Liquide

World's largest liquefaction plant in South Korea Capacity of 90 tonnes per day

PLUG POWER

Liquefaction systems with a capacity of 30 tonnes per day NIKOLA

Other observations on the segment

Acquisitions – Players are expanding through acquisitions in the liquidH2 market: Linde (acquisition of Praxair); Plug (Joule Processing LLC)

Co-dependence - The development of this segment is highly dependent on that of other liquid hydrogen technologies (storage and transport).

1. Consolidation of liquid hydrogen technologies	0000
2. Demand too low to justify large-scale manufacturers	0000
3. Race for projects and competitiveness among manuf.	0000
4. Custom manufacturing dynamics	0000

Focus on Quebec manufacturing capabilities

From a manufacturing point of view, several players are present in QC (Atlas Copco, Air Liquide, Chart Ind., Linde, Nikkiso, Air Products), but their manufacturing activities take place outside QC. Local demand for liquid hydrogen is set to increase, and liquefaction projects will follow this trend, generating demand for liquefiers. Interviews highlight the need for R&D in liquid hydrogen technologies.

Meeting growing needs for liquid hydrogen

Quebec's Strategic Interest

- The development of an H₂ liquefier manufacturing ecosystem would meet the growing need for H₂ liquid.
- Collaboration between researchers and industry would help create a center of expertise and position QC as a pioneer in these technologies. Certain other segments, held back by R&D needs, would benefit greatly (liquid storage and long-distance transport).

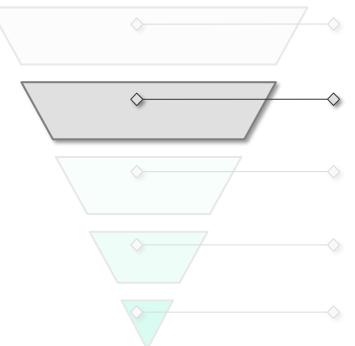
Quebec's Capacity

Forging strong links between research and industry

QC possesses expertise in liquefaction processes, held by research organizations (NRC, UQTR) and experienced industrialists (Air Liquide, Linde, Chart Ind.). Collaboration would enable these technologies to move from the prototype stage to commercialization.

Several QC players identified as capable of meeting current liquefier demand, despite manufacturing activities outside QC

Importance relative des indicateurs



Intellectual Property Analysis | Key Challenges and Objectives

Understand the dynamics of intellectual property in the hydrogen (H₂) sector: Who are the most active players in patent filings? In which sectors are these patents concentrated? On which technologies? What are the nationalities of these players? The objective is to position Canada within this ecosystem and highlight its specific features.

Overall methodology

1. IN-DEPTH STUDY OF THE MANUFACTURING ECOSYSTEI

- Analysis of 350 H₂ actors (Appendix 1.A.)
- Selection of 200 actors for in-depth analysis
- Study of their strategies, ambitions, projects, partnerships, etc.
- Meeting with 30 industry players (Appendix 1.B.)

2. IN-DEPTH ANALYSIS OF H₂ EQUIPMENTS

- Segmentation of the value chain into 14 segments of equipment for detailed analysis
- In-depth analysis of associated markets, major projects, critical minerals, R&D dynamics, etc.

3. SELECTION OF 4 STRATEGIC EQUIPMENT SEGMENTS

- Identification of key criteria for prioritizing segments: alignment with H₀ strategy. Quebec capabilities, etc.
- Calculation of a score for each segment, then selection of the 4 most promising segments

4. ANALYSIS OF SOCIO-ECONOMICAL IMPACTS

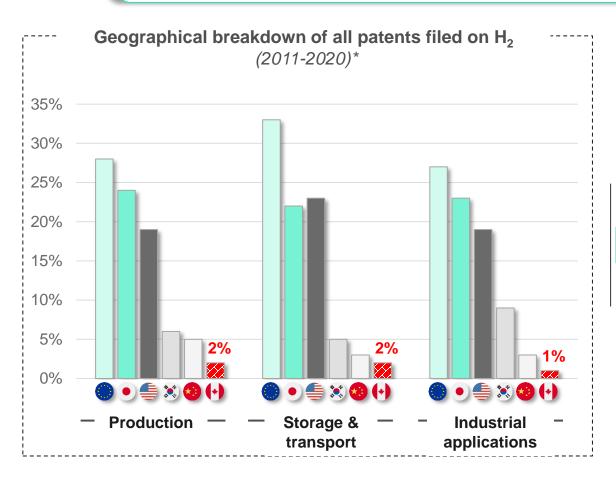
- Selection of 9 indicators reflecting the socio-economic impact of manufacturing sector development
- Study of these indicators for the 3 most mature segments
- Specific analysis for the emerging segment

5. CONCLUSION AND RECOMMENDATIONS

- Definition of 8 major findings from previous analyses
- 9 recommendations associated with these findings

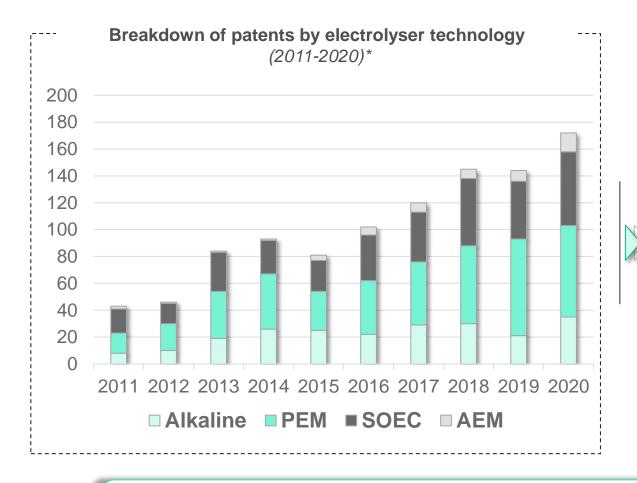
Main Challenges

- Find reliable and relevant data at a geographic scale fine enough to perform analyses by nationality.
- Put this information into perspective with the ecosystem analysis detailed in the previous section.


Scope of Analysis

 The entire H₂ manufacturing sector, with a particular focus on the 14 prioritized equipment segments.

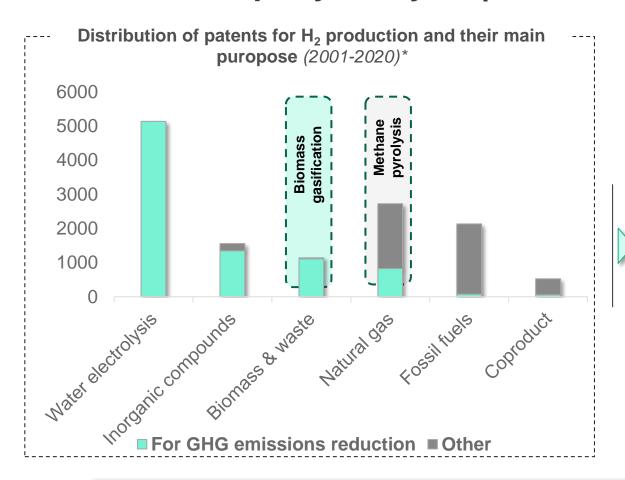
Intellectual Property Analysis | Overview


Driven by the anticipated growth in green H₂, **Europe**, the **USA** and **Japan** have positioned themselves as innovation leaders in this sector. The ecosystem - still in its infancy - gives full scope to research and development across the entire value chain: production, transport, distribution, storage and use.

- Over the last decade, the most dynamic regions have been Europe (Germany, France and the Netherlands) and Japan.
- Although accounting for 20% of patents, the USA is the only major innovation zone where patent registrations have fallen over the last 10 years.
- The players developing most of these patents are chemical and gas manufacturers (Air Liquide, Linde, BASF, etc.) and automotive industry players (Toyota, Hyundai, etc.).
- Of the patents filed over the last 10 years, almost 80% concern technologies linked to green H2, with the remaining 20% focusing on existing technologies.
- A few countries outside the top 5 (EU, Japan, USA, Korea and China) are particularly dynamic: the UK, Switzerland and Canada.

*Source: Hydrogen Patents for a Clean Energy Future, IEA, 2023

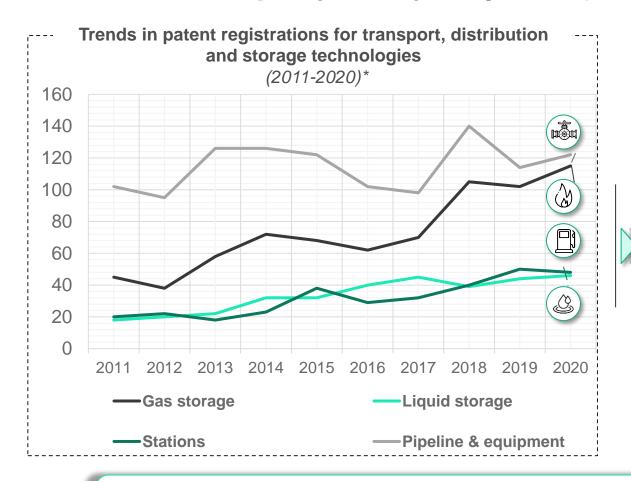
Intellectual Property Analysis | Production by Electrolysis


- It is interesting to note the different dynamics between countries' manufacturing capacities and their patent filings. Over the last 10 years, Japan has been the most prolific country in terms of patent filings, but its manufacturing capacity has not kept pace. Conversely, China files few patents, but invests heavily in its local manufacturing chains.
- Technological trends are also emerging by region:
 - The USA has a strong presence in PEM technology innovations;
 - Europe files the majority of SOEC electrolyser patents;
 - China is developing few patents, but most are in alkaline technology.
- No single technology dominates the market, as shown by the large number of patents filed. Alkaline is the oldest technology, PEM the most innovative, and SOEC and AEM are seeking to scale up.

*Source: Hydrogen Patents for a Clean Energy Future, IEA, 2023

Canada has developed intellectual property in many of these technologies, with companies springing up in these fields. For example, Hydrogen Optimized has developed a patented alkaline electrolyser technology for industrial-scale applications (12.5 MW to 50MW), and Cipher Neutron has filed 5 patents in AEM technologies.

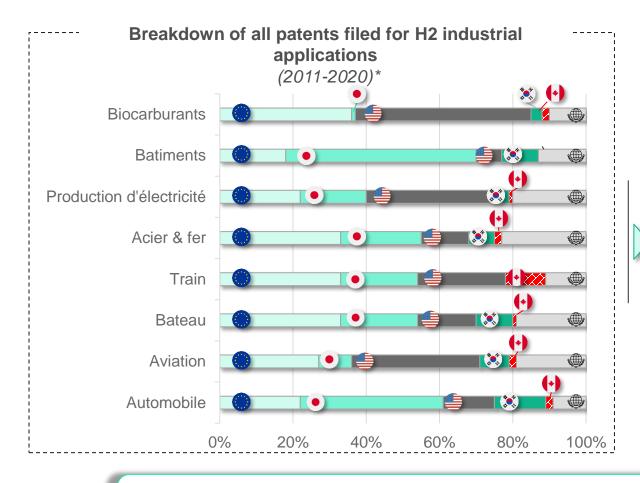
Intellectual Property Analysis | Other Production Methods


- Patent filings in the field of hydrogen production from biomass or waste (by gasification or pyrolysis) rose sharply between 2007 and 2011 but have since fallen back considerably.
- A number of challenges are being addressed for hydrogen production by methane pyrolysis:
 - Operating temperature;
 - Industrial scale-up;
 - · Auxiliary reactions that reduce yields;
 - The possibility of producing graphite instead of carbon black at the end of the process;
 - etc.
- Thyssenkrup, SABIC and Exxonmobil are the players with the most patent applications on methane pyrolysis.
- Obtaining a patent is a key factor in helping start-ups position themselves in biomass gasification and methane pyrolysis to scale up and obtain financing.

*Source: Hydrogen Patents for a Clean Energy Future, IEA, 2023

In Canada, these two sectors are particularly dynamic. Companies such as Pyrogenesis, Aurora Hydrogen, Innova Hydrogen, Plasco Energy, Omni conversion and Nu:ionic **all hold patents of interest in these technologies**.

Intellectual Property Analysis | Transport, Distribution, Storage


- H2 is transported either in gaseous form via pipelines/trailers, or in liquid form in cryogenic containers.
- An analysis of patents shows that innovations are being made across the entire value chain: transport, storage and distribution of H₂, and across all technologies - with a particular focus on Portable tanks to enable the commercialization of H₂ vehicles.
- For the moment, innovation in stationary storage is mainly focused on current applications: in the form of compressed gas on industrial sites and for refuelling stations.
- Nevertheless, in regions where demand for H2 is particularly high (Northern Europe, Texas), innovation efforts are underway to store H₂ underground on a large scale in salt caverns and transport large quantities of H₂ via pipelines.

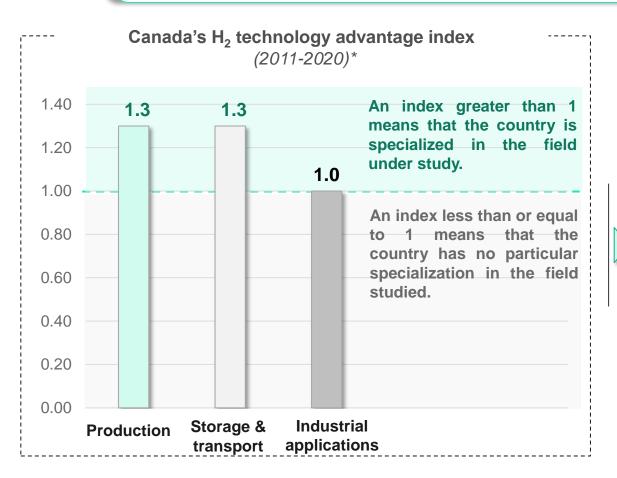
*Source: Hydrogen Patents for a Clean Energy Future, IEA, 2023

In Canada, several players are taking innovative positions in these areas. Vessel Energy, for example, offers micro-channel H₂ storage solutions that reduce tank weight by a factor of 2. In addition, Powertech's laboratories in British Columbia are unique in North America, and highly prized by manufacturers for testing the components of their H₂ stations.

Intellectual Property Analysis | Industrial Applications

- Dominated by Japan in the majority of fuel cell applications, the automotive industry is the most dynamic player in this segment.
- Innovations in fuel cell technology are generating synergies with PEM electrolysers, notably in the areas of:
 - polymers that separate membranes
 - catalysts
 - cell stacking processes
- Recently (after 2016), the number of patents filed for the decarbonization of steel by H₂ has increased significantly, with a high concentration of intellectual property in a small number of players - mostly of European origin.
- The majority of advances on FCs concern applications in road transport (light and heavy) and, to some extent, light aviation (drone) and maritime transport.

*Source : Hydrogen Patents for a Clean Energy Future, IEA, 2023



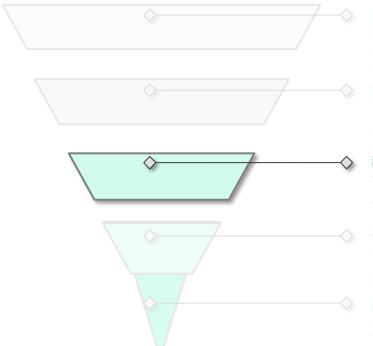
What is not visible in these graphs is that well-established FC players whose core business is FCs - such as Ballard in Canada - have filed fewer patents in these fields, but nevertheless own a lot of intellectual property on more generic FCs (not related to specific automotive applications - which take up a lot of space on these graphs).

Intellectual Property Analysis | Summary of Canada's Positioning

Although outpaced by the main H2 ecosystem driving nations: Europe, Japan, the USA, China and Korea, Canada has been identified internationally as a **dynamic and emerging patenting hub** in the H₂ sector, on a par with Switzerland and the UK.

- The technological advantage index is an indicator developed by the OECD to identify a country's technological specialization.
- It is calculated as the ratio of the share of patents filed by a country in a particular field to the share of patents filed in all fields. When it is greater than 1, this indicates technological concentration in the field studied.
- Analysis of this indicator demonstrates the important role played by H₂ in innovation in Canada, since it is greater than or equal to 1 at every link in the value chain.
- The technological advantage index also illustrates the fact that Canada specializes in part on the upstream side of the value chain: production and storage, transportation, distribution.

*Source: Hydrogen Patents for a Clean Energy Future, IEA, 2023



Strategic Segments Selection | Key Challenges and Objectives

The main objective of this stage is to **select** - from the 14 manufacturing segments presented above - **the 4 most strategic segments for Quebec**. This selection is based on a **detailed study of Quebec's capacity and interest in developing each of these segments**.

Overall methodology

1. IN-DEPTH STUDY OF THE MANUFACTURING ECOSYSTEM

- Analysis of 350 H₂ actors (Appendix 1.A.)
- Selection of 200 actors for in-depth analysis
- Study of their strategies, ambitions, projects, partnerships, etc.
- Meeting with 30 industry players (Appendix 1.B.)

2. IN-DEPTH ANALYSIS OF H. EQUIPMENTS

- Segmentation of the value chain into 14 segments of equipment for detailed analysis
- In-depth analysis of associated markets, major projects, critica minerals, R&D dynamics, etc.

3. SELECTION OF 4 STRATEGIC EQUIPMENT SEGMENTS

- Identification of key criteria for prioritizing segments: alignment with H₂ strategy, Quebec capabilities, etc.
- Calculation of a score for each segment, then selection of the 4 most promising segments

4. ANALYSIS OF SOCIO-ECONOMICAL IMPACTS

- Selection of 9 indicators reflecting the socio-economic impact of manufacturing sector development
- Study of these indicators for the 3 most mature segments
- Specific analysis for the emerging segment

5. CONCLUSION AND RECOMMENDATIONS

- Definition of 8 major findings from previous analyses
- 9 recommendations associated with these findings

Main Challenges

- Develop an objective decision-making tool, based on criteria reflecting Quebec's capacity and interest in each equipment segment.
- Work in collaboration with local players on these criteria to add intelligence and take into account the reality of the H₂ sector in Quebec.

Scope of Analysis

• The 14 H₂ production equipment (presented in p.11)

Strategic Segments Selection | Methodology

Two criteria were used to select the 4 strategic segments for Quebec: Interest and Capacity. Scores associated with each of these two criteria were evaluated. These scores correspond to the weighted average of the scores attributed to each of the established sub-criteria. The weightings of the sub-criteria and the assignment of scores were developed in a workshop with PRIMA and the MEIE.

Sub-criteria scores

Sub-crtieria - Weighting 1 2 3 4

	Criteria #1 Interest for Quebec
--	------------------------------------

Strategy on Green Hydrogen and Bioenergies - 50%	Out of scope	Medium-priority application	High-priority application	
Criticality- 20%	Present in few segments and easy to source	Present in few segments and difficult to source/Present in several segments and easy to source	Present in many segments and difficult to source	
Ease of entry into the segment– 15%	Strong entry barrier	Medium entry barrier	Low entry barrier	
Added value – 15%	Low technological and R&D content	Medium technological and R&D content	High technological and R&D content	

Manufacturing capacity – 25%	No manufacturer	Interested/present manufacturer	At least 1 manufacturer	
R&D capacity – 25%	No R&D organism	Some R&D work and actors	Strong R&D expertise and many actors	
Dépendance on SCM present in Quebec – 25%	Few SCMs and Noe present in Quebec	At least 3 SCMs present in Quebec	5+ SCMs present in Quebec	
Weighted segment maturity* – 25%	Low maturity	Medium maturity	High maturity	

Strategic Segments Selection | Prioritization Matrix

By assigning scores to each of the sub-criteria and calculating the **Interest** and **Capacity** scores, an average score is obtained which is used **to rank the segments**. This decision-making tool was used to **select the 4 priority segments** in a workshop with PRIMA and MEIE. The selection is based both on the **analysis of the scores and on discussions with MEIE experts**, giving **depth** to this objective tool.

		lı	nterest	Interest	Capacity					Capacity	Total	
Segments	H ₂ Criticality		Ease of entry into segment	Added value	Score	Manuf. R&D capacity Capacity		Dependance on QC SCMs	Weighted maturity		Score	Average Score
Electrolyzer	5	3	5	5	4.6	3	5	5	3	3.8	4.2	4.4
Industrial equipment	5	3	5	5	4.6	5	3	3	2	3.8	3.7	4.2
H₂ reactors	4	3	4	5	4.0	3	5	5	2	4.2	4.3	4.1
Fuel cells	4	5	5	5	4.5	3	5	3	4	3.4	3.6	4.1
Compressor	4	5	5	5	4.5	3	5	2	3	3.8	3.5	4.0
Liquefiers	4	5	4	4	4.2	3	5	2	4	3.4	3.4	3.8
Auxiliary equipment	4.5	3	4	3	3.9	5	2	1	4	4.4	3.1	3.5
H ₂ buses and trucks	4	1	2	2	2.8	5	2	5	4	4.4	4.1	3.5
H ₂ stations	4	3	4	3.5	3.7	3	2	5	3	2.6	3.2	3.4
Heavy H ₂ mobility	3	3	3	3	3.0	3	5	3	3	3.8	3.7	3.4
Instrumentation	3.5	3	3	2	3.1	3	5	3	4	3.4	3.6	3.4
Stationnary tanks	4	4	3	3.5	3.8	1	5	3	3	2.6	2.9	3.3
Portable tanks	4	3	3	3.5	3.6	1	5	3	4	1.8	2.7	3.1
Fittings and valves	3.5	3	1	2	2.8	3	5	2	5	3	3.3	3.0

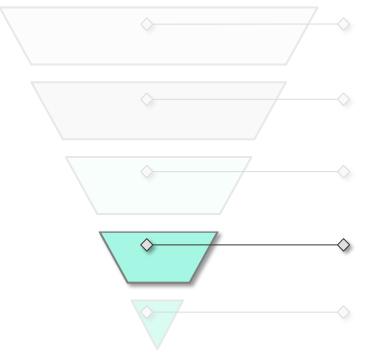
 $/: \quad \frac{5 - maturity}{5} \ x \ R\&D \ capacity + \frac{maturity}{5} \ x \ Manufacturing \ capacity$

Strategic Segments Selection | The 4 Selected Segments

The segments with the highest average score were selected (electrolysers, FC, H₂ reactors), with the exception of industrial equipment, which was eliminated because of its low specificity to the hydrogen sector.

	ELECTROLYSERS	FUEL CELLS	H₂ REACTORS	STATIONNARY TANKS
INTEREST	 Strong alignment with The Green hydrogen and bioenergy strategy Presence of green hydrogen would benefit several complementary sectors (refineries, steel industry, etc.) 	 Several FC applications identified as priorities: seasonal storage and winter peak management, long-distance trucking (class 8) High technological content transposable to the electrolyser segment 	 Reducing emissions from conventional H₂ production processes (SMR) Technology of the future, with growing needs ahead and a market that resonates strongly with QC's strengths 	 Consolidation of the QC supply chain possible through local tank manufacturing High level of specificity in the hydrogen sector and response to the needs of hydrogen users and producers
CAPACITY	 QC meets many of the needs expressed by manufacturers: strong local demand, proximity to deep-water transport, presence of infrastructure, skilled workforce and political will to support manufacturers 	 Strong R&D expertise held by universities and CCTT targeting efficiency issues and alternatives to PFAS Manufacturers present in Canada, including Ballard, which says it would be interested in setting up in QC if strong demand were to justify it 	 Strong QC expertise and intellectual property in plasma pyrolysis and biomass/waste gasification technologies Strong complementarity with existing plasma torch manufacturing skills 	 Strong R&D expertise, with plenty of room for innovation in safety systems and different storage modes A number of uses for hydrogen storage are set to develop, helping to secure demand for this equipment

- > With a view to developing strategic markets that resonate strongly with Quebec's strengths, and in strong alignment with the applications prioritized by the Green H₂ and bioenergy strategy, the stationary reservoir segment has also been selected.
- > Applications linked to the latter, such as winter peak management, are targeted, and its prioritization would help secure an important link in the local supply chain to meet the needs of both hydrogen users and producers.



Socio-Economic Analysis | Key Challenges and Objectives

The main objective of this stage is to study the **externalities associated with the development of manufacturing industries in the 4 strategic equipment segments selected**. A **quantitative analysis** of **socio-economic impacts was carried out** for the mature segments (electrolysers, fuel cells and stationary tanks) and a **qualitative approach** for the emerging H₂ reactor segment.

Overall Methodology

1. IN-DEPTH STUDY OF THE MANUFACTURING ECOSYSTEM

- Analysis of 350 H₂ actors (Appendix 1.A.)
- Selection of 200 actors for in-depth analysis
- Study of their strategies, ambitions, projects, partnerships, etc.
- Meeting with 30 industry players (Appendix 1.B.)

2. IN-DEPTH ANALYSIS OF H. EQUIPMENTS

- Segmentation of the value chain into 14 segments of equipment for detailed analysis
- In-depth analysis of associated markets, major projects, critical minerals, R&D dynamics, etc.

L SELECTION OF 4 STRATEGIC EQUIPMENT SEGMENTS

- Identification of key criteria for prioritizing segments: alignment with H. strategy. Quebec capabilities, etc.
- Calculation of a score for each segment, then selection of the 4 most promising segments

4. ANALYSIS OF SOCIO-ECONOMICAL IMPACTS

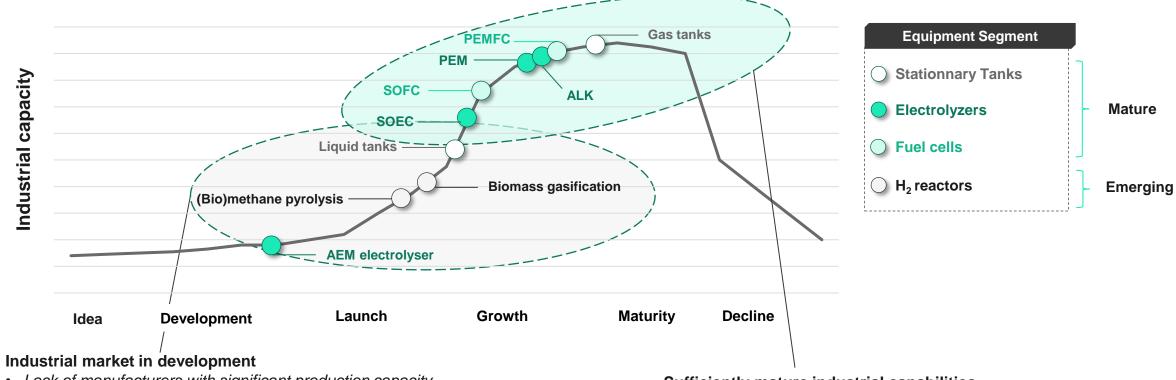
- Selection of 9 indicators reflecting the socio-economic impact of manufacturing sector development
- Study of these indicators for the 3 most mature segments
- Specific analysis for the emerging segment

5. CONCLUSION AND RECOMMENDATION:

- Definition of 8 major findings from previous analyses
- 9 recommendations associated with these findings

Main Challenges

- Select socio-economic indicators that capture the full range of externalities associated with the development of the sector
- Compare data with benchmark studies and feedback from manufacturers to assess their reliability and limitations


Scope of Analysis

- The 4 strategic equipment segments
- **Batteries** (lithium-ion technology)

Methodology | Scope of Analysis by Technological Maturity

The degree of maturity of the technologies associated with the four selected strategic equipment segments does not permit the same level of analysis for socio-economic and environmental indicators. Externalities in mature segments have been defined using quantitative indicators, while those related to the emerging hydrogen reactor segment have been assessed at a higher, qualitative level. The chart below ranks the technologies based on their corresponding industrial capacities.

Lack of manufacturers with significant production capacity

- · Pilot project developers confused with technology solution developers and manufacturers
- No socio-economic and environmental analysis of the sector's development
- This concerns the emerging H₂ reactor segment

Sufficiently mature industrial capabilities

- · Enables a socio-economic-environmental analysis of the sector's development
- This concerns the 3 mature segments of electrolysers, fuel cells and stationary tanks

Socio-Economic Analysis of Sector Development | Detailed Description

SCMs

INDICATORS RELEVANT QUESTIONS > What are the **initial investments (\$M)** to develop a production plant for a given capacity? **Financing needs** > For the production of a certain capacity per year, what is the **electrical capacity** required by the plant? **Electricity needs** > NB: These data come mainly from scientific literature. Jobs created > For a typical capacity plant (1GW or 1GWh), how many jobs are created? > On average, what is the **annual salary of employees** working for the manufacturer? Average salary Type of jobs > What is the **breakdown of jobs created**? Engineers, PhD students, technicians, support, sales, etc.? > How much revenue would the government generate for a 1GW plant? Revenues > NB: Based on ISQ methodology and taking into account two components - Taxes on products and salaries **Government of Quebec** > What is the **added value** of this segment? Added value > NB: This indicator is qualitative: dynamics of integration into the Quebec economy, synergies with the battery industry and neighboring regions, priority in H2 strategy, etc. > What are the **annual GHG emissions** associated with the deployment of a 1GW/GWh plant? \Diamond **GHG Emissions** > NB: These data are based on LCAs for the entire equipment manufacturing phase. > A criticality index has been calculated (details on p.102). This corresponds to the average stress on the

SCMs that make up the technology and that are listed in the provincial strategy. The stress on the SCMs was assessed in a workshop held in collaboration with the MRNF.

Socio-Economic Analysis | Data Collection

In order to carry out the socio-economic impact analysis, two methodologies were used at the data research/collection level: the first, termed 'top-down', which involves using the most reliable value and validating its order of magnitude by surveying several projects; and the second, termed 'bottom-up', which involves surveying as many projects as possible and homogenizing them by calculating an average that excludes outliers.

Methodology #1: Top-down

Use of the most reliable value in the reference studies, then census of several projects to validate the order of magnitude.

Preferred method when information is available

1. Literature review of reliable studies on the subject: IEA, IRENA, energy branch of governments, federation of industrial players around H2 (Ex: France hydrogen, Hydrogen Council, etc.)

2. Collection of the most reliable/documented data

3. Review of major manufacturing projects then average data by project

4. Verification of the consistency between the data from the study and that from the project review

Methodology #2: Bottom-up

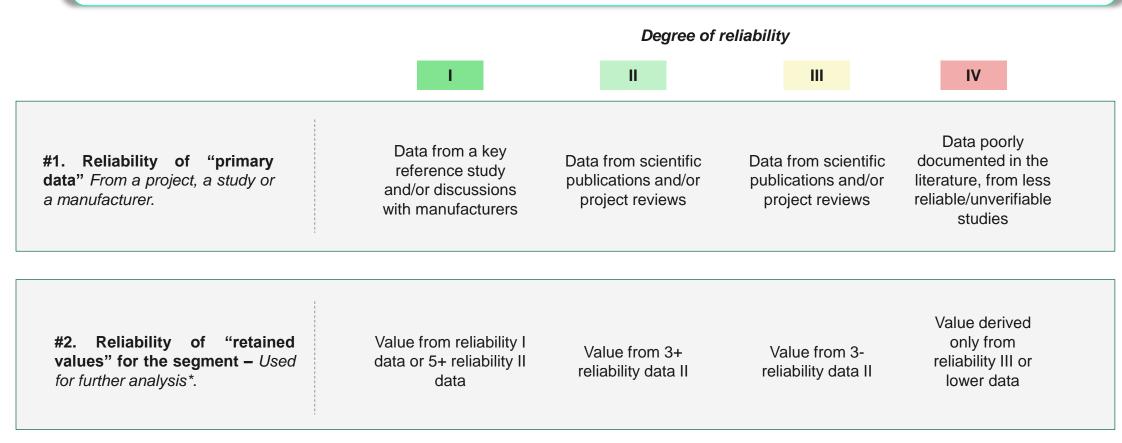
Census of a maximum number of projects, homogenization of the units then average of the values encountered after exclusion of "aberrant" data.

Method used if no reference study is found

Literature review of a large number of industrial hydrogen projects

2. Unit homogenization work (number of units produced vs. total power of the plant, etc.)

Study of "outlier" data – location, technology, reliability, etc.



Average of reliable data


Socio-Economic Analysis | Data Reliability

The manufacturing sector linked to green H₂ is very sensitive to announcement effects, which creates a **challenge in terms of reliability and the limit of the data collected**. Two reliability scales have therefore been established in order to judge the reliability of the data collected. The **first applies to the primary data** at the collection stage. The **second scale corresponds to the aggregation of these primary data**.

Socio-Economic Analysis | Overview of the 3 Mature Segments

^{*}The indicator around added value is a qualitative indicator that has been integrated into the following section of the **Conclusion and Recommendations report** in the findings presented. It takes into account elements such as the dynamics of integration into the Quebec economy, synergies with the battery sector and neighboring regions, priority in the H₂ strategy etc.

^{**}GHG emissions come from life cycle analyses carried out over the entire manufacturing phase of the equipment (extraction and processing of minerals, assembly, etc.)

Socio-Economic Indicators Analysis | Electrolyzers

Financing needs (M\$/GW)

142 M\$/GW

Data from an average calculated from 10 projects (different technologies) and verified by feedback from manufacturers and reference studies

OBSERVATIONS

- > In ascending order of CAPEX: ALK < PEM
- > Less mature technologies are associated with higher CAPEX
- > Labor costs drive manufacturers to automation
- > Value strongly influenced by the technical targets defined by the DOE

 \Diamond — \Diamond

Electricity needs (MW/GW)

35 MW/GW

Data from an average calculated from the electrical flows taken into account in several LCAs

- > Manufacturing processes less electro-intensive than the use of electrolysers
- > Significant impact on the **environmental footprint** of manufacturing processes when the **energy mix is No-decarbonized**

 \diamond — \diamond

Jobs created (FTE/GW)

304 FTE/GW

Data from an average calculated from 10 projects and verified by reference studies

- > **Nolinear relationship** between number of jobs and manufacturing capacity
- > Mid-size projects (a few dozen MW): most positive impact in terms of job creation

\$---\$

Average salary (\$/year)

\$66,000/yr

Data calculated based on job typology and average salary per job; verified by manufacturers' feedback and benchmark studies > Value that is likely to increase with the **acquisition of niche expertise** in manufacturing processes linked to electrolysers

Socio-Economic Indicators Analysis | Electrolysers

VALUE

OBSERVATIONS

Type of jobs

73% - Tech./sup. **22% -** Engineer

Ш

5% - PhD

Value from the work of France Hydrogène

- > Typology that changes significantly in the **exploitation phase**
- > **Significant synergy with FCs** in terms of job typology
- > Adaptation of the **training device** required
- > Synergies with the skills required in the battery sector

Quebec government revenues (M\$/GW)

\$90M/yr

Value calculated following the ISQ methodology

- > Taking into account taxes on products (QST and GST) and on salaries (according to salary level)
- > The product tax represents approximately 94% of the revenue generated for the Quebec government.

GHG emissions (tCO2eq/GW)

108,000 ktCO2eq/GW

Data from an average calculated from several LCAs

- > Buyers are increasingly looking for *green* electrolysers
- > Data used as input to assess the carbon footprint of hydrogen production
- > If the energy mix is No-decarbonized, this has a significant impact on GHG emissions

SCMs*
(Without unit)

ALK – **3.2**

Ш

PEM - **3.3**

AEM – **3.1**

SOEC - 2.9

- > PEM technology is the most intensive in terms of SCMs
- > Some SCMs in medium to high tension with the battery sector
- > Technological advances that enable the **substitution** or **recycling of SCMs**

SIAPARTNERS

*Indicator calculated by aggregating the criticality index of each SCMs composing the technology. The "raw" data by SCMs were calculated and verified by the MRNF.

Socio-Economic Indicators Analysis | Fuel Cells

Financing needs (M\$/GW)

162 M\$/GW

Data from an average calculated from 5 projects (different technologies) and verified by feedback from manufacturers and reference studies

- Value that would evolve downwards with the increase in manufacturing capacities in the coming years; possible thanks to improvements in manufacturing processes and the automation of certain manufacturing phases
- > Unlike the battery, the manufacturing cost of a heat pump results from the manufacture of the latter and not from the materials that compose it.

Electricity needs (MW/GW)

5 MW/GW

Data from an average calculated from the electrical flows taken into account in several LCAs

- > This value makes sense when the energy mix is not decarbonized
- > It has a **significant impact on the environmental footprint** of a heat pump over its life cycle, in which the manufacturing phase is often taken into account.

Jobs created (FTE/GW)

323 FTE/GW

Data from an average calculated from 5 projects and verified by reference studies

- > The evolution of the PAC manufacturing sector will result in **recruitment peaks** which risk coinciding with those of other segments or sectors (mobility)
- > Estimating long-term job demand helps better plan labor needs

Average salary (\$/year)

- \$72,615/yr
- Ш

Data calculated based on job typology and average salary per job; verified by manufacturers' feedback and benchmark studies

- > Average salary which could increase with the acquisition of advanced skills
- > **Growing demand for jobs** generated by the development of the hydrogen manufacturing sector and that of the battery; value which would increase in the short term: demand stronger than supply

Socio-Economic Indicators Analysis | Fuel Cells

VALUE

OBSERVATIONS

Type of jobs

73% - Tech./sup. 22% - Engineer 4% - PhD student

Value based on a project carried out by Symbio

- > Job typology similar to that observed in the electrolyser segment
- > Strong technological similarity in fuel cell assembly processes and electrolyzer cell assembly processes

Quebec government revenues (M\$/GW)

\$41M/year

Value calculated following the ISQ methodology

> Similar to the electrolyser segment, the largest share of revenue generated for the government is due to product taxes (90%).

GHG emissions (tCO2eq/GW)

24,000ktCO2eq/GW

Data from an average calculated from 2 LCAs

- > Other environmental impacts around PACs must be considered, particularly around PFAS which contaminate water and soils.
- > If the energy mix is No-decarbonized, this has a significant impact on GHG emissions

SCMs* (No unit)

PEMFC - 3.5

> Several R&D projects are underway to find alternative catalysts to Platinum that would reduce the criticality of SCMs in PEM technology.

Socio-Economic Indicators Analysis | Stationary Tanks

Financing needs (\$/kWh)

VALUE

16 M\$/GWh

Data from an average calculated from 7 projects (different pressure and type)

OBSERVATIONS

- > Significant cost difference depending on tank type : Type IV tanks approximately 300% more expensive than Type I
- > The opposite trend is observed in terms of weight per volume of stored gas.
- > Unlike the electrolyzer segment, the cost of materials has a significant impact on the manufacturing cost of tanks.

\$---\$

Electricity needs (kWh/kgH₂)

0.16 MW/GWh

Ш

Data from an average calculated from the electrical flows taken into account in several LCAs

> Tank manufacturing processes are assumed to be electro-intensive in the literature: high temperature heating requirements of the polymers composing the internal liners before their packaging

Jobs created (FTE/tank)

9 FTE/1000 tank

Data from an average calculated from 2 projects

> Jobs created could be filled in the short term with resources from the aeronautics sector where the manufacturing processes used are similar, especially at the filament winding level.

Average salary (\$/year)

-

Data impossible to calculate: job typology not available in the literature or from manufacturers

- > Labor represents about 9% of the total cost of tank manufacturing
- > The significant increase in average wages would be a trigger for a move towards automation of manufacturing processes.

Socio-Economic Indicators Analysis | Stationary Tanks

VALUE

OBSERVATIONS

Type of jobs (%)

Data impossible to calculate: job typology not available in the literature or from manufacturers

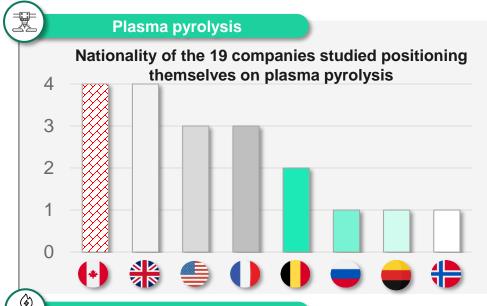
Quebec government revenues (M\$/GW)

Uncalculable data: value of the required average salary

GHG emissions (ktCO2eg/kgH₂) 18224 ktCO2eg/GWh IV

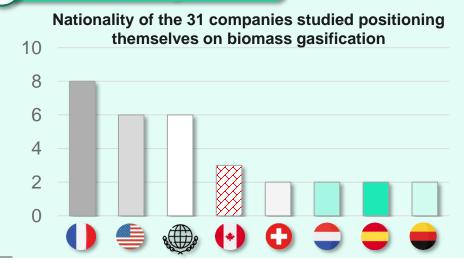
Data from an average calculated from several LCAs

SCMs* (Without unit)


Gaseous - 3.3 Liquid – **2.7**

Data calculated and verified with the MRNF

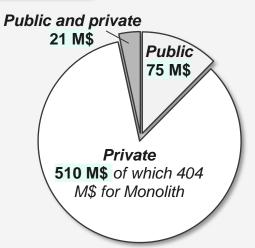
- > Jobs created require a good knowledge of the processes involved in tank manufacturing (e.g. winding carbon fiber filaments to produce the internal liner) and adequate quality control.
- > Different job typology depending on the type of tanks : Type I and II mainly forging, Type III: mainly assembly and wrapping, Type IV: experience in polymer extrusion
- > Although an estimate of the demand for tanks remains necessary, certain applications targeted by the strategy on green H₂ and bioenergies such as seasonal storage will result in an increasing demand for this equipment, thus attracting manufacturers in the long term.
- > The share related to the tax on products generated by manufacturers could represent the largest share of the revenues generated (like the other segments)
- > Some tank manufacturing processes take place at high temperatures, therefore requiring a significant energy input.
- > If the energy mix is No-decarbonized, this has a significant impact on GHG emissions
- > **SCM** in tension with the battery sector : aluminum, carbon, chrome, iron, nickel, titanium
- > R&D efforts exist around the substitution of SCMs present in tanks but are mainly focused on safety systems


*Indicator calculated by aggregating the criticality index of each SCMs composing the technology. The "raw" data by SCMs were calculated and verified by the MRNF.

Analysis of H₂ Reactors | Key Players and Their Market Positioning

- In plasma pyrolysis, Canada is a particularly dynamic player with 4 out of 19 companies tagged.
- These players are mainly companies that have developed plasma processes for other applications (metal separation, waste management, additive manufacturing, etc.; or start-ups from universities (6K – University of Alberta; Cambridge Nanosystem – Cambridge, etc.).
- The companies are particularly young, most of them having been created between 2008 and 2012; or after 2021. They are small and medium-sized companies with low TRLs. Only Monolith has reached industrial scale with its factory expansion in Olive Creek (USA) planned for 2025.

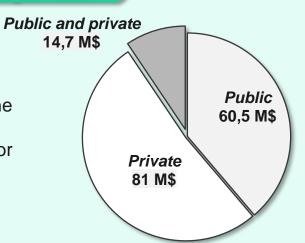
Biomass/waste gasification


- In biomass gasification, 3 out of the 31 companies tagged are Canadian. France and the United States stand out in this segment.
- The majority of the players are specialists in H2 reactors which are developing only in this niche.
- At least 9 of the 43 development projects for these reactors are in collaboration with research institutes.
- Of the 31 companies, 3 closed due to lack of a profitable business model, financial inability and/or inability to source inputs.

Analysis of H₂ reactors | Financing and Partnerships

Plasma pyrolysis

In total, \$606
million of
investment in the
methane pyrolysis
sector has been
earmarked.



- Partnerships are being formed between technology solution providers and manufacturers to develop reactors producing customized carbon outputs:
 - Carbon black production for tires : Monolith and Good Year
 - Studies underway to develop solutions producing graphite for the battery industry – Aurora Hydrogen
- Monolith 's funding comes from a fundraising round in 2022. \$1.35 billion in aid was also provided by the Department of Energy, but is not represented in the chart opposite because it takes the form of a loan.

Biomass/waste gasification

In total, \$156
million of
investment in the
biomass/waste
gasification sector
has been
earmarked.

- Technology solution providers develop strategic partnerships with research and development organizations (InEnTec – MIT, Materia Nova – the University of Mons, etc.) to optimize the performance of their technologies.
- Partnerships are also being forged in collaboration with potential input suppliers such as agricultural associations and/or the pulp and paper industry to recover agricultural residues and municipalities to collect municipal waste (Mote – Municipality of Sacramento)

Analysis of H₂ Reactors | Added Value for Quebec's Economy

Plasma pyrolysis

	Exa	Example of Canadian companies										
	Players	Province	Distinctive elements									
	AURORA HYDROGEN	Alberta	Could produce battery-grade graphite									
	innovahydrogen	Alberta	Named among Canada's 15 most innovative young companies in 2023									
	NU:IONIC TECHNOLOGIES	New Brunswick	Announced a 2400 kg H₂/d project by 2025 in New Brunswick									
PYROGENESIS Quebec			Mature company (51-200 employees) with proven technology in No- H ₂									

Interesting interactions of methane pyrolysis in the Quebec economy

- Co -products of H₂ production have strong synergies with the Quebec economy: graphite for use in battery and/or electrolyzer production plants (in the event of support from the sector).
- Less congestion on electrical capacities: up to 7x less electricity required for H₂ production than by electrolysers in theory.
- Synergy with the development of the GNR sector: When using GNR as an input, the H₂ produced sequesters CO₂.

Biomass/waste gasification

Exa	ample of Cai	nadian companies					
Players	Province	Distinctive elements					
CONVERSION TECHNOLOGIES	Ontario	Factories already in operation in California					
MINNOVA	Ontario	Pilot plant planned in Manitoba					
REN *energy	British Columbia	Pilot plant planned in British Columbia					
PYROGENESIS	Quebec	Plasma expertise is also used to produce synthesis gas from waste					

Interesting interactions of gasification in the Quebec economy

- Forest, agricultural and municipal biomass deposits are significant – in its strategy on green H₂ and bioenergy for 2030, Quebec identifies 19.2 Mt anhydrous of biomass or 326 PJ in energy equivalent in 2019.
- 80% of the minerals that make up these reactors are identified as SCMs by the provincial strategy.
- The processes are versatile and could take municipal, hospital, etc. waste as input.

Socio-Economic Analysis | Interactions with the Battery Sector

The socio-economic study of the development of the sector made it possible to identify observations that were used to feed the **analysis of high-level interactions between the hydrogen sector and the battery sector**. These interactions are studied under 4 axes: **SCMs**, **technologies**, **workforce and policies**.

Technologies 🗥

STRONG TECHNOLOGICAL SYNERGIES EXIST BETWEEN THE TWO SECTORS

This technological synergy is mainly observed at the level of batteries and electrolysers which are two **modular technologies** well suited to large-scale manufacturing. The technological progress observed at the level of batteries is more advanced than that of electrolysers with the costs of lithium-ion batteries which are significantly reduced thanks to the scaling up of manufacturing processes. The scaling up at the level of electrolysers is at an earlier stage but the reductions in costs are evolving significantly with several objectives established by the Department of Energy in the United States. **The technological synergies between the two sectors are broken down into 3 elements**:

Similar processes

Promising complementary applications

Common research and development issues

Batteries and electrolysers are based on the same electrochemical principles allowing the hydrogen industry to benefit from the knowledge and expertise generated to reduce scale-up cycles and associated costs.

These two sectors share several components such as electrolytes, membrane materials and manufacturing processes. This explains why some manufacturers such as Toray or BASF offer both solutions.

Current efforts in terms of application of electrolysis are concentrated around processes based on renewable energies such as solar or wind which are **intermittent sources**. not allowing stable production. **The integration of a battery** that allows energy storage upstream makes it possible to generate a stable power source for the electrolysers, highlighting an example of the **complementarity of these two technologies** that can exist. This application scenario is becoming more and more frequent thanks to the reduction in battery costs.

Despite the high maturity of the battery sector, some R&D challenges remain to be mastered and several of them are complementary to the challenges targeted for the hydrogen sector:

- Substitution of SCMs: need to replace SCMs components of technologies by the discovery of new materials thanks to AI
- SCMs recycling: need to find ways to recover the metals that make up the technologies
- Improving the durability of catalytic materials and membranes

Socio-Economic Analysis | Interactions with the Battery Sector

SCM

INTERACTIONS EXIST ON SOME SCM BETWEEN THE TWO SECTORS

② Zoom in on p.102

The identification of SCM common to the hydrogen and battery technologies makes it possible to estimate the tension and criticality that is created around them by the development of the two respective sectors. This reflection is in alignment with the Quebec Plan for the Valorization of Critical and Strategic Minerals, which aims to make Quebec a leader in the production, processing and recycling of critical and strategic minerals in partnership with regional and indigenous communities. The importance of this Plan is illustrated by the **geopolitical tensions** recently observed such as Chinese restrictions on the export of gallium, germanium and graphite. The installation of this context makes the mapping of SCMs increasingly necessary in order to identify **risks related to the supply chain** and **ways to mitigate future bottlenecks**. Our analysis is limited to the identification of SCM in tension and the assessment of their criticality.

Identification of SCMs in tension

The SCMs present in each of the technologies related to the equipment studied (battery, electrolyzers, PAC, stationary tanks and H₂ reactors) were identified and a tension score was determined for each SCMs in the workshop with the MRNF. An increasing tension scale from 1 to 5 was established. The SCMs with a tension of 4 or more are as follows:

Carbon – in tension with the battery sector but possible synergy (graphite from methane pyrolysis)

Cobalt – in tension because available in small quantities, concentration of mines in Congo

Iridium – in tension because produced in small quantities

Lithium – In the long term, 95% of demand in the battery sector (currently more in the order of 80-90%)

Nickel - in lower tension than other SCMs but concentration of mines in Indonesia

These tensions mainly concern electrolysis technologies and lithium-ion batteries.

Assessment of the criticality of SCM under tension

In order to study the tension on the common SCMs between the technology studied and Quebec, a criticality index (presented in S102) was calculated. The latter corresponds to the average of the tensions of the SCMs that make up the technology and that are included in the provincial plan. By equipment segment, the technologies with the highest criticality indices are as follows:

Lithium-ion batteries: 100%*

ALK electrolysers: 67% PEM fuel cells: 75% Gas tanks: 80%

Plasma pyrolysis reactors: 80%

*% of SCMs components of the technology listed in the provincial plan

Socio-Economic Analysis | Interactions with the Battery Sector

SIMILAR JOB TYPES

The study of the socio-economic indicator on the typology of jobs makes it possible to characterize at a high level the skills that will be required following the development of the hydrogen sector. Some job typologies are similar to those found in the battery sector. A study on labor needs would make it possible to better plan vocational training, guarantee balanced economic growth and meet the needs of the labor market. Our analysis is limited to the study of high-level job typologies.

COMPLEMENTARY TECHNOLOGIES

Local policies have a significant impact on the **development of industrial sectors and the adoption of the technologies** that are part of them. In Quebec, the **PEV 2030** and the **Green H_2 and Bioenergy Strategy** present the battery and hydrogen technologies respectively as key pillars of decarbonization. These policies position these sectors and the technologies that are part of them as two complementary outlets for a clean energy future.

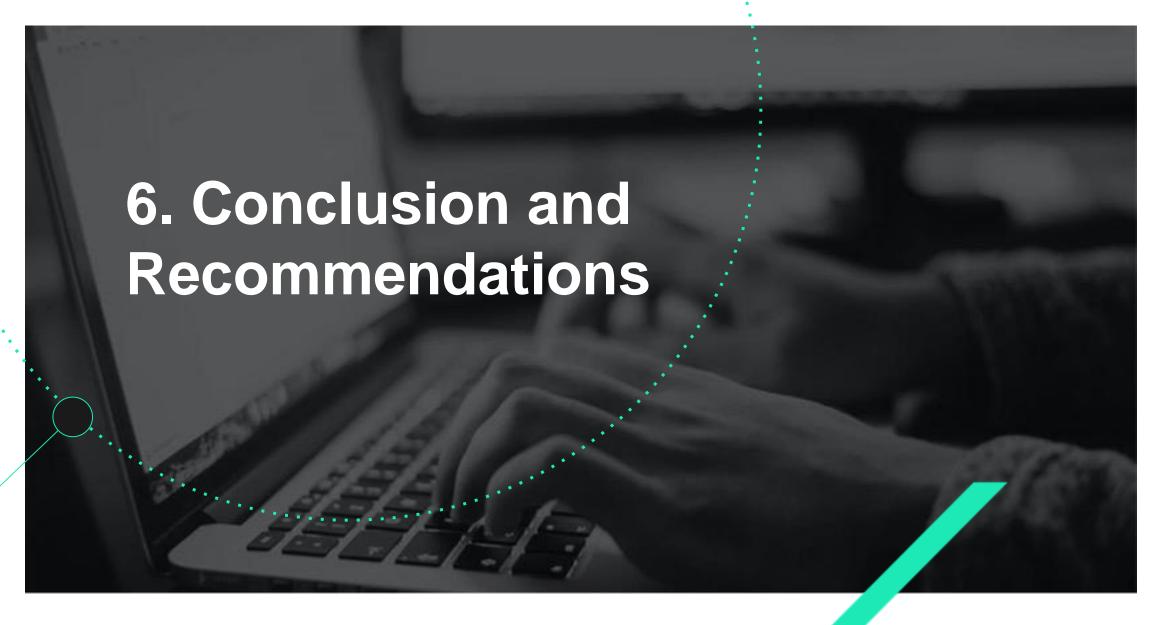
Job types and training

A similar job typology between the two sectors: similarities in job typologies between electrolysers and fuel cells and the battery sector; a majority of technician and engineer profiles. In terms of skills, the need is present both for cross-functional skills (safety and regulations) and for specific expertise needs (H₂ system).

A training offer that is in a dynamic of construction: different universities in Quebec train a qualified workforce and the VTÉ innovation zones focus on the development of skills specific to the two sectors.

Policies supporting both sectors

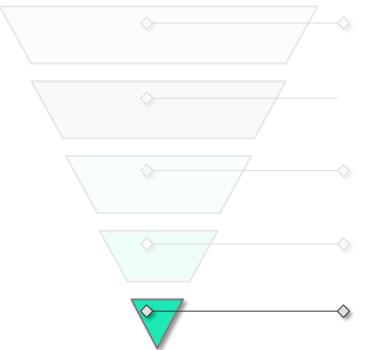
PEV 2030: This plan refers to both the battery sector with applications that target in particular the transport sector and energy storage and the hydrogen sector as a complementary solution to electricity when the latter is not an economically profitable or possible solution to replace fossil fuels.


Strategy on green hydrogen and bioenergies: This strategy prioritizes several applications in the hydrogen sector for which the energy demand will be served by Hydro-Québec in complementarity with other sectors including the battery sector.

Socio-Economic Analysis | Focus on SCMs

A criticality index was calculated. The latter corresponds to the average of the tensions of the SCMs that make up the technology <u>and</u> which are included in the provincial plan. The tension on the SCMs was evaluated in a workshop in collaboration with the MRNF.

			Battery	ry Electrolysers			FC	Stationn	ary tanks	H ₂ react	ors	
Minerals	Quebec SCM?	Tension	Li-ion	ALK	PEM	AEM	SOEC	PEMFC	Gas	Liquid	Biomass gasification	Methane pyrolysis
Aluminium	Yes	2	1	1	1				1	1	1	1
Silver	No	1			1	1						
Carbon	Yes	4	1	1	1	1			1			
Cerium	Yes	2				1	1					
Chrome	No	-		1	1	1	1	1	1	1		1
Cobalt	Yes	4	1	1		1	1					
Copper	Yes	3	1		1	1	1				1	1
Iron	Yes	-	1	1	1	1	1		1	1		1
Gadolinium	No	-					1	1				
Iridium	Yes	4			1	1						
Lanthanum	Yes	2				1	1					
Manganese	Yes	3	1				1					
Molybdene	No	-		1		1						
Lithium	Yes	4	1									
Nickel	Yes	4	1	1	1	1	1	1	1	1		1
Gold	No	1			1							
Platinum	Yes	3			1	1		1				
Ruthénium	Yes	3			1	1						
Scandium	Yes	1					1					
Silicium	Yes	1	1									
Titanium	Yes	2		1	1	1	1			1		
Yttrium	Yes	3					1					
Zirconium	No	-		1			1					
Quebec SCM	Is criticality index	-	3.43	3.20	3.30	3.10	2.7	3.50	3.33	2.67	2.50	3.00



Conclusion and Recommendations | Key challenges and objectives

Synthesize the strengths, weaknesses, threats and opportunities for the H₂ manufacturing sector in Quebec. Then, based on the findings of the analysis and meetings with manufacturers, **draw up a set of recommendations** backed up by **well-founded, objective arguments**.

Overall methodology

1. IN-DEPTH STUDY OF THE MANUFACTURING ECOSYSTEI

- Analysis of 350 H₂ actors (Appendix 1.A.)
- Selection of 200 actors for in-depth analysis
- Study of their strategies, ambitions, projects, partnerships, etc.
- Meeting with 30 industry players (Appendix 1.B.)

2. IN-DEPTH ANALYSIS OF H. EQUIPMENTS

- Segmentation of the value chain into 14 segments of equipment for detailed analysis
- In-depth analysis of associated markets, major projects, critical minerals. R&D dynamics, etc.

3. SELECTION OF 4 STRATEGIC EQUIPMENT SEGMENTS

- Identification of key criteria for prioritizing segments: alignment with H₂ strategy. Quebec capabilities, etc.
- Calculation of a score for each segment, then selection of the 4 most promising segments

4. ANALYSIS OF SOCIO-ECONOMICAL IMPACTS

- Selection of 9 indicators reflecting the socio-economic impact of manufacturing sector development
- Study of these indicators for the 3 most mature segments
- Specific analysis for the emerging segment

5. CONCLUSION AND RECOMMENDATIONS

- **Definition of 8 major findings** from previous analyses
- 9 recommendations associated with these findings

Main Challenges

- Synthesize a large amount of information into a coherent set of findings/recommendations
- Propose recommendations based on factual, clear, objective and pragmatic findings

Scope of Analysis

 The 4 strategic segments: electrolysers, fuel cells, stationary tanks and H₂ reactors

Conclusion and Recommendations | Guide to Interpreting the Findings

In the interests of neutrality and objectivity, each recommendation presented below is associated with at least one observation, and is supported by an argument based on an analysis of the ecosystem.

FINDING

Findings are objective observations that emerge from analysis or interviews with manufacturers

ARGUMENTS

The arguments support and illustrate the findings. They add depth to the analysis

RECOMMENDATION

Based on an observation, the recommendation is issued with the aim of taking advantage of an opportunity or reducing risks

Finding #1 | The current regulatory environment favors the development of U.S.-based manufacturers

The U.S. has put in place policies that provide strong incentives for manufacturers to operate locally

- Historically, most industrial production has been relocated to Asia to minimize production costs. Recently, manufacturing activities
 have been brought back to the U.S. as a result of favorable regulations and policies
- · The Buy American Act requires federal entities to source U.S.-produced goods with local assembly lines
 - Negative impact on potential export markets for players setting up in Quebec who rely on supplies from U.S. federal entities
- The Inflation Reduction Act encourages the proliferation of H₂ production projects in the US. and the Bipartisan Infrastructure Law
 finances manufacturing activities through the creation of H₂ HUBs
 - IRA offers tax credits for hydrogen production (up to \$3 per kg of H2 produced)
 - \$7 billion has also been invested in the development of H2 HUBS in the U.S.

A good understanding of these policies and their limits would enable us to activate the most appropriate levers

- Quebec can identify gaps in the U.S. manufacturing sector and in these texts and fill them with its differentiators.
 - There is some reluctance on the U.S. side with regard to the Buy American Act, for example: impossible to implement, higher project costs, etc.
 - Example of QC's capacity in batteries: 28% of cathodes in North America will be produced in Bécancour by 2030

RECOMMENDATION #1 | In the very short term, document the international regulatory context to better position Quebec differentiators in relation to the limits of these policies.

Finding #1 | The current regulatory environment favors the development of U.S.-based manufacturers

The U.S. has put in place policies that provide strong incentives for manufacturers to operate locally

- Historically, most industrial production has been relocated to Asia to minimize production costs. Recently, manufacturing activities
 have been brought back to the U.S. as a result of favorable regulations and policies
- The Buy American Act requires federal entities to source U.S.-produced goods with local assembly lines
 - Negative impact on potential export markets for players setting up in Quebec who rely on supplies from U.S. federal entities
- The Inflation Reduction Act encourages the proliferation of H₂ production projects in the US. and the Bipartisan Infrastructure Law finances manufacturing activities through the creation of H₂ HUBs
 - IRA offers tax credits for hydrogen production (up to \$3 per kg of H2 produced)
 - \$7 billion has also been invested in the development of H₂ HUBS in the U.S.

A good understanding of these policies and their limits would enable us to activate the most appropriate levers

- Quebec can identify gaps in the U.S. manufacturing sector and in these texts and fill them with its differentiators.
 - There is some reluctance on the U.S. side with regard to the Buy American Act, for example: impossible to implement, higher project costs, etc.
 - Example of QC's capacity in batteries: 28% of cathodes in North America will be produced in Bécancour by 2030

RECOMMENDATION #1 | In the very short term, document the international regulatory context to better position Quebec differentiators in relation to the limits of these policies.

Finding #2 | Quebec is unique in its ability to capture value across the entire supply chain

Presence of SCMs in H₂ technologies is an important strategic advantage for Quebec

- Each of the 9 technologies that make up the 4 strategic equipment segments are made up of at least 50% of SCMs identified by the provincial strategy including 7 technologies with more than 75% of SCMs in common with the Quebec vision.
- Manufacturers have identified SCMs as a key issue. The SCMs market is particularly volatile and sensitive to project announcements.
 - For example, over 60% of the cost of a PEMFC cell is related to platinum

Quebec's workforce is skilled and capable of taking on high-tech phases

• When setting up a manufacturing plant, an in-depth analysis is carried out to identify which components need to be imported or produced locally. Quebec has a workforce capable of handling most manufacturing steps, especially the more complex ones.

Particular attention is needed to recover value at every stage of production

• When setting up a manufacturing plant, a detailed analysis of its supply chains will ensure that Quebec is not positioned solely as a territory where minerals are extracted and finished technological solutions assembled, but that development of intermediate stages (mineral processing, production of sub-components, etc.) is encouraged as much as possible.

RECOMMENDATION #2 | Scheduling the various links in the supply chain and ensuring that any grey areas are identified when a manufacturer is set up

Finding #3 | Technological choices are key in a developing manufacturing ecosystem

- 🖟 In a context of rapid, ever-changing innovation, betting everything on a single technology would be very risky
- Following the example of the battery industry, **certain technologies that currently dominate the market** (alkaline electrolysers, gas storage, etc.) **could be gradually replaced by technologies that are more efficient/adapted** to market needs. To meet this challenge, some manufacturers are developing adaptable plants capable of making the transition from one technology to another rapidly.

- Strengthening research/industry links and offering financial support help to de-risk the innovation process.
 - It could be worthwhile to draw on the support of **industrial research clusters** such as PRIMA, InnovÉÉ, etc., and the VTÉ Hydrogen Innovation Cluster.
- Facilitate the transition from laboratory to pilot project scale, particularly for less mature strategic segments (AEM electrolysers, H2 reactors, liquid storage).
 - A number of Investissements Québec's innovation programs can help mature technologies (Innovation Program, Productivité innovation, etc.).
- 1 Innovation must be deployed rapidly to take advantage of the current window of opportunity
- With a view to delivering solutions in a timeframe consistent with market needs, the R&D sector would benefit from the experience and
 expertise in innovation project management of certain industrial players

RECOMMENDATION #3 | Foster the development of collaborative innovation between research and industry to develop solutions in the 4 strategic segments linked to green H₂

Finding #4 | The risk of technological mismatches between supply and demand solutions is high

Innovations are very present in the segments studied and in the H₂ sector in general

- The diversity of H₂ solutions developed in laboratories and, more recently, in commercial-scale units, has created a dynamic for innovation in all directions supported by economic competition between companies and regions. This supports a fragmented economy in which technological needs and innovations do not always meet.
- _____ It is necessary to direct and prioritize developments to ensure that solutions find a market within a timeframe aligned with the needs of industry
- Regions have every interest in directing innovation towards new manufacturing techniques, less dependence on certain critical minerals or
 the use of desirable inputs (brine or contaminated water for electrolysers, for example). However, it is necessary to define objectives and
 priorities for each technology in order to rationalize efforts and avoid dispersion.
 - Ex : alkaline electrolysers encounter difficulties when the energy source is intermittent. If off-grid projects such as TES Canada are developed in Quebec, should R&D in this technology be prioritized?
- Too many different technologies can **complicate standardization efforts and end-of-life initiatives**. With too many different forms of components, recycling precious minerals will be a challenge.
 - R&D prioritization initiatives exist in the USA, with milestones set by the DOE for each technology. Similarly, in Europe, "Strategic Innovation Milestones" anchor a common vision for research.

RECOMMENDATION #4 | Establish precise, quantified R&D objectives, based on clearly defined guidelines, targets and milestones, which will support the development of green H₂ equipment in the 4 strategic segments identified.

Finding #5 | There are a number of technical and economic synergies between the segments and the battery industry

Some manufacturing processes are very similar and require the same components

- Supporting similar technologies/processes allows several segments to shine with the same investment
 - There are strong complementarities between PEMFC manufacturing processes and PEM electrolysers, for example. This is due to the reversibility of PEM fuel cells, which can be used in the opposite direction for electrolysis, and thus enables significant synergies between the innovation efforts of the two technologies.

- From the point of view of SCMs and manpower, synergies with the battery industry have also been observed
- Numerous SCMs are contained in H2 technologies and in the lithium-ion batteries developed in Quebec: aluminum, carbon, cobalt, copper, iron, manganese and nickel. Complementarities therefore exist in the recycling chain, in R&D, and in securing significant local demand.
- The types of jobs developed by the plants are also similar: technicians, engineers, support, sales, etc. A more in-depth analysis of labor requirements would enable us to identify the bridges between the two sectors.

——There's a fine line between synergies and inter-sector competitions

• In cases where labor and SCMs are in tension, these synergies are transformed into competition (i.e., an insufficient labor pool for both sectors, and a supply of SCMs too low to support both sectors). It would then be interesting to quantify precisely these two points to characterize the interactions between the sectors.

RECOMMENDATION #5 | Give priority to supply chain links that benefit several segments (SCMs, recycling, similar manufacturing processes).

RECOMMENDATION #6 | Define a concrete vision of future demand (SCMs, etc.) and production to ensure a match between these ecosystems

Finding #6 | Manufacturers look closely at local authorities' ability and willingness to provide support

Financing helps manufacturers set up shop, but is not the only lever for action

- The following measures actively **support the establishment of manufacturers** in the region:
 - Simplification of set-up procedures
 - Standardization and certification of technologies, development of standards
 - Positioning QC as a purchaser of part of the production process
 - Establishing contact with the local industrial and academic ecosystem, and helping to develop potential subcontractors

Quebec would benefit from the development of a common vision on foreign direct investment

• Standardizing Quebec's message and "brand image" and pooling the efforts to attract foreign manufacturers would improve the effectiveness of our actions in this area.

RECOMMENDATION #7 | Standardize and communicate a concerted foreign direct investment attraction plan for potential H₂ manufacturers in identified strategic segments.

Finding #7 | The race is on, and Quebec has strategic assets to position itself

Industrial capacities are already well developed in the most mature strategic segments

- In these markets, the balance of power currently favors manufacturers. The majority of international players are large, well-established manufacturers who are diversifying with H2 and looking for the most attractive location.
- These players are primarily looking for local demand for their equipment, skilled labor, local support and relays, low-cost, decarbonized electricity, SCPs linked to H2 technologies, and so on.
- Large-scale investment has already been seen in the electrolyser, fuel cell and tank markets, but Noe in Quebec. However, the majority of manufacturers' needs are similar to what the region has to offer so Quebec is in a favorable position to host future investments.

Some strategic emerging markets resonate strongly with Quebec's strengths

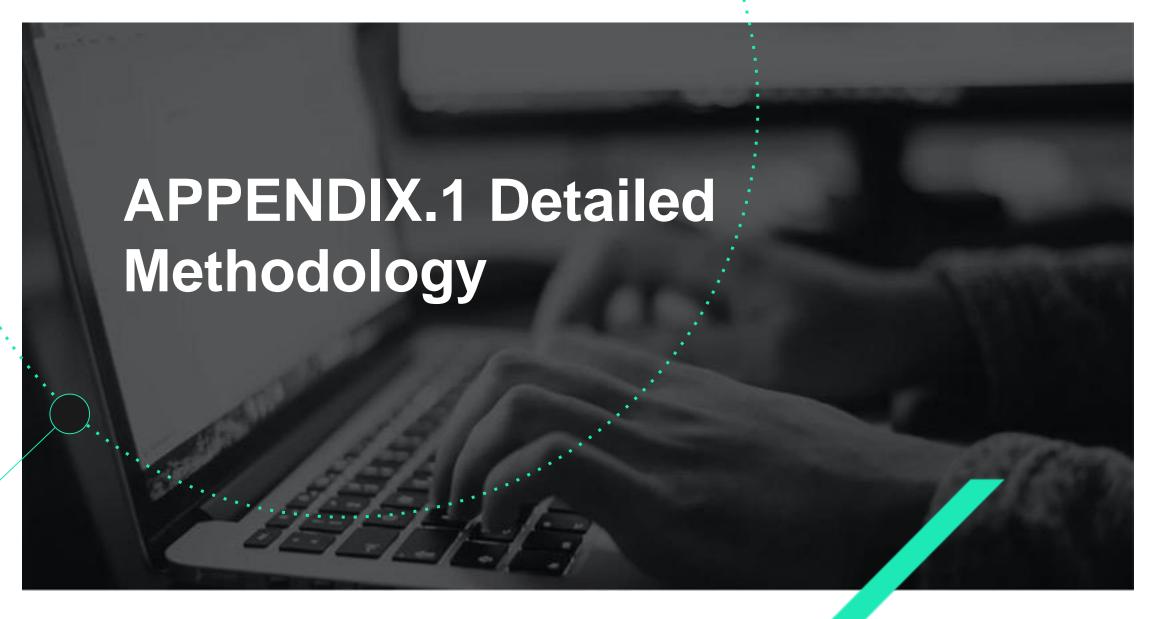
- Players who take risks by entering the still-developing markets of H₂ reactors or AEM electrolysers, gain valuable market share and feedback
- Expertise in plasma gasification and pyrolysis processes is held by universities such as McGill, Polytechnique, INRS, UQTR, Concordia and Sherbrooke. Companies such as Pyrogenesis in Quebec and Cypher Neutron in Ontario are also promising players in these emerging markets.

RECOMMENDATION #8 | Striking a balance by supporting **one technology in mature strategic segments** (FCs, electrolysers and reservoirs) **and one emerging technology** (AEM, plasma pyrolysis, biomass gasification) would **reduce risks and leverage all of Quebec's assets**

Finding #8 | Lack of clear signals from current policies is holding back H₂ manufacturers

The development of a costed industrial policy reduces risk and uncertainty for players

- Le rationnel principal dans le choix d'implantation d'un manufacturier réside dans sa confiance envers la demande locale. Le déploiement d'une politique industrielle manufacturière donnerait de la visibilité et permettrait de réduire le risque prévisionnel des investisseurs et promoteurs.
- Plusieurs anNoces de projets de grande envergure au Québec (TES, Greenfield, etc.) sont regardées de près par les manufacturiers, mais la peur des effets d'anNoces dans un écosystème H₂ très volatil freine les investissements
- Une politique industrielle manufacturière chiffrée **compléterait la vision existante** développée dans Stratégie québécoise sur l'hydrogène vert et les bioénergies qui fixe le cap jusqu'à 2030. Elle pourrait détailler entre autres **les orientations R&D**, **l'implication du milieu universitaire**, **la part des équipements pour le marché local et pour l'exportation**, **la demande en SCM**, etc.
- 66 Clarifying which technologies to prioritize and which standards to use would facilitate scaling up
- The H₂ manufacturing universe is difficult to navigate due to the changing nature of the ecosystem: regular innovations, standards that vary according to geography, projects, etc. An industrial manufacturing policy would provide guidance and a clear vision for equipment manufacturers.



RECOMMENDATION #9 | Drawing up a costed manufacturing industrial policy (time horizon, objectives, equipment, technologies, SCPs, etc.) for the development of H₂ green equipment in Quebec would help **clarify the uncertainties** raised by the above findings. It could be **linked to a more comprehensive carbon-neutral industrial policy**, as recommended in the report by the <u>Groupe de Consultation pour la Carboneutralité</u>.

APPENDICES

SIAPARTNERS confidential

APPENDIX 1.A. | Sources and Types of Information Collected

The analysis is based on a **detailed study of the players making up the manufacturing ecosystem**. To this end, **a complete review of Quebec and international manufacturers was carried out**, identifying a total of over 300 players in the ecosystem.

Ecosystem analysis process

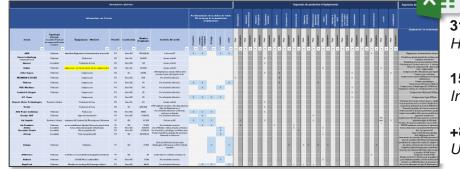
Consolidated list | 312 actors

Elimination criteria | Ex : size of the company, activity sector, etc.

Preliminary list | 156 manufacturers

High-level analysis criteria | Ex : H₂ ambitions, Influence, etc.

Refined list | 156 manufacturers filtered and analyzed



In-depth ecosystem analysis| Ex: See here

Ecosystem analysis deliverable | 14 equipment segments

Focus on the ecosystem analysis

- 1 | Detailed characterization of the actor: size, presence in Qc, geography, etc.
- 2 | Identification of the production equipment segment
- 3 | Analysis of technologies used and intellectual property
- **4 | Analysis of manufacturing capacity:** number of installations, installed capacity, orders, etc.
- **5 | Strategic/Technological partnerships:** buyouts, joint ventures, implementation in foreign countries, technology supplier partnerships, etc.
- **6 | Other useful information:** ambitions, competitive positioning, key projects, technology applications, etc.

312 actors High-level

156 manufacturers
In-depth analysis

+800 sources Used

APPENDIX 1.B. Interviews with H₂ Industry Players

Players interviewed individually

In parallel with this ecosystem analysis, **individual H₂ players were interviewed** to understand their needs and expectations. In addition, the project steering committee included **several government institutions**, and the results were presented several times to a panel of H₂ experts.

Powertech

Les matériaux pour avancei

Green Hydrogen Manufacturing: Value Chain Development | Authors

Marco Savoie
Partner
Energy and environment
Sia Partners

Myrielle Robitaille, Eng.
Managing Director
Energy and environment
Sia Partners

Mathieu Demoulin
Senior consultant
Energy and environment
Sia Partners

Catherine Kallas, CEP
Consultant
Energy and environment
Sia Partners